基于可变形卷积神经网络和趋同相似性原理的预测方法

    公开(公告)号:CN118335201A

    公开(公告)日:2024-07-12

    申请号:CN202410748840.X

    申请日:2024-06-12

    Abstract: 本发明涉及一种预测方法,具体是基于可变形卷积神经网络和趋同相似性原理的预测方法,通过收集蛋白质序列、蛋白质结构数据和蛋白质相互作用信息;使用可变形卷积神经网络DCN模型对蛋白质序列进行特征提取;计算蛋白质的趋同相似性,将获得的序列相似性矩阵、结构相似性矩阵、功能相似性矩阵三个矩阵,将所有矩阵的加权平均作为融合后最终的相似性矩阵;选择图神经网络GNN处理图结构数据,使用部分已知的蛋白质相互作用信息来训练预测模型,选择随机梯度下降优化算法优化模型参数;利用优化后的预测模型对蛋白质的相互作用进行预测。本发明融合可变形卷积技术和趋同相似性技术,显著提升了蛋白质相互作用网络的数据质量和深度解析。

    基于可变形卷积神经网络和趋同相似性原理的预测方法

    公开(公告)号:CN118335201B

    公开(公告)日:2024-10-01

    申请号:CN202410748840.X

    申请日:2024-06-12

    Abstract: 本发明涉及一种预测方法,具体是基于可变形卷积神经网络和趋同相似性原理的预测方法,通过收集蛋白质序列、蛋白质结构数据和蛋白质相互作用信息;使用可变形卷积神经网络DCN模型对蛋白质序列进行特征提取;计算蛋白质的趋同相似性,将获得的序列相似性矩阵、结构相似性矩阵、功能相似性矩阵三个矩阵,将所有矩阵的加权平均作为融合后最终的相似性矩阵;选择图神经网络GNN处理图结构数据,使用部分已知的蛋白质相互作用信息来训练预测模型,选择随机梯度下降优化算法优化模型参数;利用优化后的预测模型对蛋白质的相互作用进行预测。本发明融合可变形卷积技术和趋同相似性技术,显著提升了蛋白质相互作用网络的数据质量和深度解析。

    基于滑动窗口的主动域自适应跨模态医学图像分割方法

    公开(公告)号:CN118015021A

    公开(公告)日:2024-05-10

    申请号:CN202410410453.5

    申请日:2024-04-07

    Abstract: 本发明适用于跨模态医学图像分割技术领域,提供了基于滑动窗口的主动域自适应跨模态医学图像分割方法,该方法在主动域适应任务中,利用一组带标签的源数据和未带标签的目标数据;训练一个分割网络,该分割网络能在目标域上实现良好的分割性能,只需少量注释预算;训练一个分割网络的步骤包括:S1:预训练与伪标签生成;S2:滑动窗口定义;S3:窗口不稳定性计算;S4:窗口获取策略;S5:类间距离优化策略;S6:模型训练。本发明的图像分割方法充分利用了标注预算,并采用了有效的采集策略,以实现显著的跨域分割性能。

    一种基于波动阈值与分割化的多意图口语理解方法

    公开(公告)号:CN117151121B

    公开(公告)日:2024-01-12

    申请号:CN202311401665.9

    申请日:2023-10-26

    Abstract: 性。本发明涉及一种口语理解方法,具体是一种基于波动阈值与分割化的多意图口语理解方法,该方法包括:对于一段输入的话语将其编码为隐藏状态序列后得到预测的意图和槽值,将预测的槽值与意图转化为向量形式嵌入到模型中;利用SD计算一个范围加权矩阵与输入的意图对应相乘,划定其范围后结合注意力机制融合意图检测和槽位填充结果的重要语义信息,使用波动阈值进行输出判断。本发明可以获得每个意图的既定范围,从而起到了减少范围外标记干扰的作用;通过设置基准阈值,然后运用斯皮尔曼系数与余(56)对比文件陈婷婷;林民;李艳玲.基于Attention+Bi-LSTM的公交出行意图和语义槽填充联合识别.青海师范大学学报(自然科学版).2019,(第04期),全文.Peng Yang.AISE:Attending to Intentand Slots Explicitiy for better spokenlanguage understanding.ELSEVIER.2021,全文.张启辰, 王 帅, 李静梅.一种基于窗口机制的口语理解异构图网络.软件学报.2023,全文.王永梅,胡学钢.决策树中ID3算法的研究.安徽大学学报(自然科学版).2011,全文.端到端对话系统意图语义槽联合识别研究综述.计算机工程与应用.2020,全文.赵冬阳;范国华;赵印勇;陈信;王文宇;张友华.一种基于无人机遥感和卷积神经网络的梨树树龄梯度识别方法.信阳农林学院学报.2020,(第01期),全文.

    一种基于深度学习和长读测序的SNP和INDEL检测方法

    公开(公告)号:CN119028431B

    公开(公告)日:2024-12-31

    申请号:CN202411514743.0

    申请日:2024-10-29

    Abstract: 本发明适用于生物信息学领域,具体是一种基于深度学习和长读测序的SNP和INDEL检测方法,包括:对待检测数据进行第一预处理,生成第一叠加图像,将第一叠加图像作为SNP检测模型的输入,输出得到SNP的VCF文件;对待检测数据进行第二预处理,生成第二叠加图像,将第二叠加图像作为INDEL检测模型的输入,输出得到INDEL的VCF文件;利用基于R语言的VcfR数据处理工具,对所得到的VCF文件中的数据进行变异检测和处理,得到基因组上的变异检测结果;使用IGV输出显示基因组上的变异检测结果。本发明使用了深度学习技术和长读测序技术,能够解决传统方法在灵活性与泛化能力、计算效率上的低性能,以及面对复杂问题时短读测序存在的无法检测区域的问题。

    一种基于深度学习和长读测序的SNP和INDEL检测方法

    公开(公告)号:CN119028431A

    公开(公告)日:2024-11-26

    申请号:CN202411514743.0

    申请日:2024-10-29

    Abstract: 本发明适用于生物信息学领域,具体是一种基于深度学习和长读测序的SNP和INDEL检测方法,包括:对待检测数据进行第一预处理,生成第一叠加图像,将第一叠加图像作为SNP检测模型的输入,输出得到SNP的VCF文件;对待检测数据进行第二预处理,生成第二叠加图像,将第二叠加图像作为INDEL检测模型的输入,输出得到INDEL的VCF文件;利用基于R语言的VcfR数据处理工具,对所得到的VCF文件中的数据进行变异检测和处理,得到基因组上的变异检测结果;使用IGV输出显示基因组上的变异检测结果。本发明使用了深度学习技术和长读测序技术,能够解决传统方法在灵活性与泛化能力、计算效率上的低性能,以及面对复杂问题时短读测序存在的无法检测区域的问题。

    基于滑动窗口的主动域自适应跨模态医学图像分割方法

    公开(公告)号:CN118015021B

    公开(公告)日:2024-07-09

    申请号:CN202410410453.5

    申请日:2024-04-07

    Abstract: 本发明适用于跨模态医学图像分割技术领域,提供了基于滑动窗口的主动域自适应跨模态医学图像分割方法,该方法在主动域适应任务中,利用一组带标签的源数据和未带标签的目标数据;训练一个分割网络,该分割网络能在目标域上实现良好的分割性能,只需少量注释预算;训练一个分割网络的步骤包括:S1:预训练与伪标签生成;S2:滑动窗口定义;S3:窗口不稳定性计算;S4:窗口获取策略;S5:类间距离优化策略;S6:模型训练。本发明的图像分割方法充分利用了标注预算,并采用了有效的采集策略,以实现显著的跨域分割性能。

    基于思维链及可视化提升上下文学习知识库问答方法

    公开(公告)号:CN117076653B

    公开(公告)日:2024-01-02

    申请号:CN202311340689.8

    申请日:2023-10-17

    Abstract: 本发明适用于知识库问答技术领域,提供了基于思维链及可视化提升上下文学习知识库问答方法,包括以下步骤:在知识库中检索与需查询问题相似的示例;对所述相似的示例和所述需查询问题一并利用思维链产生逻辑推理过程;利用CodeGeex2模型学习所述逻辑推理过程后,生成需查询问题的逻辑形式;获取所述用户勘误后的逻辑形式,在知识库中对需查询问题进行知识抽取、实体绑定与关系绑定,利用多数票策略来确定需查询问题的答案,并将答案输出给用户。本发明在模型生成逻辑形式前引入思考链,利用符号内存提高大语言模型的复杂问题多跳推理能力,先针对示例用思维链进行推理回答,再利用模型来生成逻辑形式的模板,能够提高答案推

    基于思维链及可视化提升上下文学习知识库问答方法

    公开(公告)号:CN117076653A

    公开(公告)日:2023-11-17

    申请号:CN202311340689.8

    申请日:2023-10-17

    Abstract: 本发明适用于知识库问答技术领域,提供了基于思维链及可视化提升上下文学习知识库问答方法,包括以下步骤:在知识库中检索与需查询问题相似的示例;对所述相似的示例和所述需查询问题一并利用思维链产生逻辑推理过程;利用CodeGeex2模型学习所述逻辑推理过程后,生成需查询问题的逻辑形式;获取所述用户勘误后的逻辑形式,在知识库中对需查询问题进行知识抽取、实体绑定与关系绑定,利用多数票策略来确定需查询问题的答案,并将答案输出给用户。本发明在模型生成逻辑形式前引入思考链,利用符号内存提高大语言模型的复杂问题多跳推理能力,先针对示例用思维链进行推理回答,再利用模型来生成逻辑形式的模板,能够提高答案推理与错误分析能力。

Patent Agency Ranking