一种变电站一次接线图智能解析方法

    公开(公告)号:CN115294595A

    公开(公告)日:2022-11-04

    申请号:CN202210727367.8

    申请日:2022-06-24

    IPC分类号: G06V30/422 G06V30/414

    摘要: 本发明公开了一种变电站一次接线图智能解析方法,包括:1)基于目标检测算法和模板匹配法实现一次接线图图元位置检测与旋转角度识别;2)利用霍夫直线检测识别接线图中主要连接线,并根据图元位置检测图元端点;3)使用背景色填充图元所在像素区域,获得仅包含连接线的一次接线图,采用阈值分割提取连接线像素;4)选取任意一个图元的端点作为起始生长点,获取与该起始生长点的连通区域,采用或复制先检测拟合该连通区域;本发明优点是:可从非结构化的一次接线图中智能提取元件、拓扑关系、关键字等结构化信息,自动生成接线表,可以有效的对现有一次接线图进行数字化管理,大大提高变电站运维管理人员的工作效率。

    知识图谱驱动的配电网现场作业视频智能安全管控方法

    公开(公告)号:CN112419091B

    公开(公告)日:2022-07-08

    申请号:CN202011348251.0

    申请日:2020-11-26

    申请人: 武汉大学

    IPC分类号: G06Q50/06 G06V20/40 G06V20/52

    摘要: 本发明公开了一种知识图谱驱动的配电网现场作业视频智能安全管控方法,首先构建电力作业安全管控知识图谱,旨在分解作业任务中的对象、流程、注意事项及其他语义信息,使作业更加直观可视化,并为后续人员信息安全的匹配、技能点的动作匹配和动态评价建立基础;然后划分配电网作业现场区域和视频智能管控类别;最后利用深度学习算法,并结合了作业现场各区域的监控视频,实时全过程地对作业人员进行安全管控,改以往被动的现场作业人工监督为主动智能的自动化监控,为现场作业安全风险的事前预警提供支持,从而降低现场作业人员的风险,减少事故发生概率,对提高配电网现场作业安全管控水平具有重要意义。

    知识图谱驱动的配电网现场作业视频智能安全管控方法

    公开(公告)号:CN112419091A

    公开(公告)日:2021-02-26

    申请号:CN202011348251.0

    申请日:2020-11-26

    申请人: 武汉大学

    IPC分类号: G06Q50/06 G06K9/00

    摘要: 本发明公开了一种知识图谱驱动的配电网现场作业视频智能安全管控方法,首先构建电力作业安全管控知识图谱,旨在分解作业任务中的对象、流程、注意事项及其他语义信息,使作业更加直观可视化,并为后续人员信息安全的匹配、技能点的动作匹配和动态评价建立基础;然后划分配电网作业现场区域和视频智能管控类别;最后利用深度学习算法,并结合了作业现场各区域的监控视频,实时全过程地对作业人员进行安全管控,改以往被动的现场作业人工监督为主动智能的自动化监控,为现场作业安全风险的事前预警提供支持,从而降低现场作业人员的风险,减少事故发生概率,对提高配电网现场作业安全管控水平具有重要意义。

    一种基于多通道声信号时空关联性分析的电力设备局部放电分类方法

    公开(公告)号:CN116561556A

    公开(公告)日:2023-08-08

    申请号:CN202310483281.X

    申请日:2023-04-28

    申请人: 武汉大学

    摘要: 本发明公开了一种基于多通道声信号时空关联性分析的电力设备局部放电分类方法,通过分别挖掘多通道声信号的空间关联性和时间关联性,对电力设备局部放电类型进行分类。本发明提出一种进行时空关联性挖掘的一维卷积神经网络,首先对多通道声信号进行空间关联性挖掘,获取空间权重信息并对多通道声信号特征进行空间关联性加权;然后在此基础上对各通道信号进行时间关联性挖掘,从而获得时间权重信息并对各通道声信号进行时间关联性加权;最后经过空间和时间关联性挖掘的多通道声信号进行进一步特征提取和局放类型分类。本发明能有效基于声信号进行电力设备局部放电分类,从而为电力设备的故障诊断和预防提供支持。

    用于电气设备状态感知的跨模态数据融合方法

    公开(公告)号:CN112418324B

    公开(公告)日:2022-06-24

    申请号:CN202011334424.3

    申请日:2020-11-25

    申请人: 武汉大学

    摘要: 本发明公开了一种用于电气设备状态感知的跨模态数据融合方法,基于多传感器数据和图像数据这两类跨模态数据,对电气设备的状态进行融合感知。本发明首先将多传感器时间序列数据转换为递归图;然后分别用不同的卷积神经网络对递归图和电气设备图像数据进行特征提取;之后按照权重对这两类数据特征进行有效拼接,最后对融合后的特征进行进一步特征提取和状态等级感知。本发明充分利用了电气设备监测数据中的多传感器和图像这两类跨模态数据,一定程度上解决了基于单模态数据感知中精确率低和容错性差的问题。

    用于电气设备状态感知的跨模态数据融合方法

    公开(公告)号:CN112418324A

    公开(公告)日:2021-02-26

    申请号:CN202011334424.3

    申请日:2020-11-25

    申请人: 武汉大学

    IPC分类号: G06K9/62 G06N3/04 G06N3/08

    摘要: 本发明公开了一种用于电气设备状态感知的跨模态数据融合方法,基于多传感器数据和图像数据这两类跨模态数据,对电气设备的状态进行融合感知。本发明首先将多传感器时间序列数据转换为递归图;然后分别用不同的卷积神经网络对递归图和电气设备图像数据进行特征提取;之后按照权重对这两类数据特征进行有效拼接,最后对融合后的特征进行进一步特征提取和状态等级感知。本发明充分利用了电气设备监测数据中的多传感器和图像这两类跨模态数据,一定程度上解决了基于单模态数据感知中精确率低和容错性差的问题。