Abstract:
The present invention relates to a color measurement device for measuring the color of a target object, the device comprising: an illumination system including an illumination source having at least a white portion in combination with a chromatic portion, the illumination system being structured to generate light in all portions of the visible spectrum and provide spatially uniform illumination at a given target distance from the target object sufficient to spatially over-illuminate a predetermined target area on the target object, wherein the illumination system further comprises an illumination lens structured for operative association with the illumination source, the illumination lens comprising at least one optically fast lens, and at least one spatial intensity filter positioned in operative association with the illumination lens; an optical collection system structured for non-contact color measurement of the target object, wherein the optical collection system is positioned in the device to function at a distance from the target object and receive light reflected therefrom, the optical collection system further comprising an image-based collection optic having a field stop at an image plane to define a target area plane for the target object; and a color engine in communication with the optical collection system configured for spectrally analyzing light detected by the optical communication system.
Abstract:
The present invention relates to a solid-state based light source, a corresponding circuitry and a method of emitting light, including one or more light source elements for generating light, a first sensor for receiving light emitted by the light source elements and ambient light and for generating a first sensor signal (S1) representing the received light, a second sensor for only receiving ambient light and for generating a second sensor signal (S2) representing the received ambient light. Moreover, the solid-state based light source comprises a control unit for receiving the first and the second sensor signals (S1, S2) and for generating control signals (Sc) for controlling the light source elements, based on the difference between the first and the second sensor signals (S1, S2), to compensate for the influence of the ambient light.
Abstract:
An optical apparatus for measurement of industrial chemical processes. The analyzer uses Raman scattering and performs measurement of chemical concentrations in continuous or batch processes. The analyzer operates at a standoff distance from the analyte (or analytes) and can measure concentrations through an optical port, facilitating continuous, non-destructive, and non-invasive analysis without extracting the analyte or analytes from the process. The analyzer can measure one or several solid, liquid, or gaseous analytes, or a mixture thereof.
Abstract:
The spectroscopy module 1 is provided with a body portion 2 for transmitting light L1, L2, a spectroscopic portion 3 for dispersing light L1 made incident from the front plane 2a of the body portion 2 into the body portion 2 to reflect the light on the front plane 2a, a lisht detecting element 4 having a lisht detecting portion 41 for detecting the light L2 dispersed and reflected by the spectroscopic portion 3 and electrically connected to a wiring 9 formed on the front plane 2a of the body portion 2 by face-down bonding, and an underfill material 12 filled in the body portion 2 side of the lisht detecting element 4 to transmit the light L1, L2. The lisht detecting element 4 is provided with a light-passing hole 42 through which the light L1 advancing into the spectroscopic portion 3 passes, and a raised portion 43 in a rectangular annular shape is formed on a rear plane 4a of the body portion 2 side in the lisht detecting element 4 so as to enclose a light outgoing opening 42b of the light-passing hole 42.
Abstract:
In a spectrometer, preferably in a spectrometric microscope, light from a specimen is collected at a collector objective element and delivered to a camera element, which in turn provides the light to a photosensitive detector. A focal plane is provided between the collector objective element and the camera element, and one or more aperture arrays may be situated in the focal plane to restrict the detector's field of view of the specimen to the areas within the apertures. By utilizing aperture arrays with apertures of different sizes and shapes, the spatial resolution of the spectrometer readings may be varied without the need to vary the optics of the spectrometer. As a result, if the optics are optimized to minimize vignetting, spatial resolution may be varied without adverse increases in vignetting.
Abstract:
Die Erfindung betrifft ein Verfahren zur Herstellung von multispektralen Filterbaugruppen, die aus mehreren separat beschichteten Filterelementen zusammengesetzt sind, sowie eine Filteranordnung für Zeilenkameras zur multispektralen Bildaufnahme, insbesondere für die Fernerkundung der Erde. Die Aufgabe der Erfindung, eine neue Möglichkeit zur Herstellung von mehrkanaligen multispektralen Filterbaugruppen zu finden, die das Fertigungs- und Kostenrisiko von kompakten multispektralen Filterbaugruppen auch bei zunehmender Anzahl der Spektralkanäle reduziert, wird erfindungsgemäß gelöst, indem Substratbarren (3) aus für die zu filternde Wellenlänge des jeweiligen Filterelements (4) geeigneten optischem Material zuerst durch beliebige Formgebungsverfahren und Bearbeitungsverfahren maßhaltig hergestellt und erst danach unterschiedliche beschichtet, nach ihrer spektralen Güte selektiert und abschließend in geeigneter Weise zusammengesetzt werden.
Abstract:
Color calibration of color image rendering devices, such as large color displays, which operate by either projection or emission of images, utilize internal color measurement instrument or external color measurement modules locatable on a wall or speaker. A dual use camera is provided for a portable or laptop computer, or a cellular phone, handset, personal digital assistant or other handheld device with a digital camera, in which one of the camera or a display is movable with respect to the other to enable the camera in a first mode to capture images of the display for enabling calibration of the display, and in a second mode for capturing image other than of the display. The displays may represent rendering devices for enabling virtual proofing in a network, or may be part of stand-alone systems and apparatuses for color calibration. Improved calibration is also provided for sensing and correcting for non-uniformities of rendering devices, such as color displays, printer, presses, or other color image rendering device.
Abstract:
A method and system for effecting an appearance model correction for a display unit, e.g., a CRT, using a polynomial-based algorithm is described. The correction may be effected in real time and is based on gamma values associated with the display. Strong correlations with the CIECAM02 specification are achieved according to the present disclosure. The correction functionality may be inaplemented using a colorimeter that includes a plurality of sensors/filter systems with non overlappng spectral responses, adequate for providing data capable of translation into standard coordinates system such as, CIE XYZ, CIE L* a* b*, or CIE Luv, as well as non-standard operable coordinate systems. The field of view of the colorimeter is chosen to closely track the response of the human eye using an optical path configured to select and limit the field of view in a manner that is insensitive to placement of the colorimeter on the source image. The optical path from the source image to the sensor is configured to select preferred light rays while rejecting undesirable light rays to maximize the signal/noise ratio. A rearward facing sensor channel is included to simultaneously measure ambient light impinging on the source image and feedback means to provide status and/or change of information.