摘要:
The invention relates to a large-apertured microlithography projection lens (5). The diaphragm error is also systematically corrected, so that the pupil plane is slightly curved and the lens can be stopped down without compromising quality. The system diaphragm of the projection lens is located in the area of the last lens cluster of positive refractive power on the image side. The telecentrics of the projection lens remain stable on the image side during stopping down.
摘要:
A catadioptric projection lens for imaging a pattern arranged in an object plane onto an image plane, preferably while creating a real intermediate image, including a catadioptric first lens section having a concave mirror and a physical beamsplitter having a beamsplitting surface, as well as a second lens section that is preferably refractive and follows the beamsplitter, between its object plane and image plane. Positive refractive power is arranged in an optical near-field of the object plane, which is arranged at a working distance from the first optical surface of the projection lens. The beamsplitter lies in the vicinity of low marginal-ray heights, which allows configuring projection lenses that are fully corrected for longitudinal chromatic aberration, while employing small quantities of materials, particularly those materials needed for fabricating their beamsplitters.
摘要:
Objective (1) having a first partial objective (3) which projects a first field plane (7) onto an intermediate image (11) and comprises a first convex mirror (13) with a first central mirror aperture (15) and a second concave mirror (17) with a second central mirror aperture (19), the first mirror (13) having a first axial spacing from the second mirror (17 )', and the second mirror (17) having a second axial spacing from the intermediate image (11), and the ratio of the first axial spacing to the second axial spacing having a value of between 0.95 and 1.05, in particular between 0.98 and 1.02, and a second partial objective (5), which projects the intermediate image (11) onto a second field plane (9) and comprises a third concave mirror (21) with a third central mirror aperture (23) and a fourth concave mirror (25) with a fourth central mirror aperture (27) 1 the third mirror (21) having from the second field plane (9) a third axial spacing ZM3-IM which has the following relationship with a numerical aperture NA in the second field plane (9) and with a diameter DUM3 of the third mirror (21) : (I), the objective (1) having a Petzval radius whose absolute value is greater than the axial spacing of the first field plane (7) from the second field plane (9) .
摘要:
The invention relates to a reflective X-ray microscope for examining an object on an object plane wherein the object is illuminated with radiation at a wavelength of
摘要:
A microlithography projection optical system (1100) comprises a plurality of optical elements (1110, 1120, 1130, 1140, 1150, 1160) arranged to image radiation having a wavelength λ from an object field in an object plane (103) to an image field in an image plane (102). The plurality of optical elements (1110, 1120, 1130, 1140, 1150, 1160). has an entrance pupil located more than 2,8 m from the object plane. A path of radiation through the optical system is characterized by chief rays having an angle of 3° or more with respect to the normal to the object plane. This in particular allows the use of phase shifting masks as objects to be imaged, in particular for EUV wavelengths.
摘要:
A catoptric microlithography projection optical system (300) comprises a plurality of reflective optical elements (310, 320, 330, 340, 350, 360) arranged to image radiation having a wavelength λ from an object field in an object plane (103) to an image field, having a size of at least 1 mm x 1 mm, in an image plane (102). This optical system has an object-image shift (OIS) of about 75 mm or less. In this case, metrology and testing can be easily implemented despite rotations of the optical system about a rotation axis.
摘要:
A catadioptric projection objective for imaging a pattern provided in an object plane of the projection objective onto an image plane of the projection objective has a first, refractive objective part for imaging the pattern provided in the object plane into a first intermediate image; a second objective part including at least one concave mirror for imaging the first intermediate imaging into a second intermediate image; and a third, refractive objective part for imaging the second intermediate imaging onto the image plane; wherein the projection objective has a maximum lens diameter Dmax , a maximum image field height Y', and an image side numerical aperture NA; wherein COMP1 = Dmax / (Y' • NA2) and wherein the condition COMP1
摘要:
A catadioptric projection objective for imaging of a pattern, which is arranged on the object plane of the projection objective, on the image plane of the projection objective has a first objective part for imaging of an object field to form a first real intermediate image, a second objective part for production of a second real intermediate image using the radiation coming from the first objective part; and a third objective part for imaging of the second real intermediate image on the image plane. The second objective part is a catadioptric objective part with a concave mirror. A first folding mirror for deflection of the radiation coming from the object plane in the direction of the concave mirror and a second folding mirror for deflection of the radiation coming from the concave mirror in the direction of the image plane are provided. A field lens with a positive refractive power is arranged between the first intermediate image and/or the first folding mirror and the concave mirror, in an area close to the field of the first intermediate image.
摘要:
A catadioptric projection objective (200) for imaging a pattern provided in an object plane (201) of the projection objective onto an image plane (202) of the projection objective comprises: a first objective part (210) for imaging the pattern provided in the object plane into a first intermediate image; a second objective part (220) for imaging the first intermediate imaging into a second intermediate image; a third objective part (230) for imaging the second intermediate imaging directly onto the image plane; wherein a first concave mirror (221) having a first continuous mirror surface and at least one second concave mirror (222) having a second continuous mirror surface are arranged upstream of the second intermediate image; pupil surfaces are formed between the object plane and the first intermediate image, between the first and the second intermediate image and between the second intermediate image and the image plane; and all concave mirrors are arranged optically remote from a pupil surface. The system has potential for very high numerical apertures at moderate lens material mass consumption.
摘要:
A lens system, especially a projection lens system for a microlithographic projection illumination system, comprising at least one fluoride crystal lens. The disruptive influence of birefringence is reduced by using a lens which is a lens (100) with a lens axis which is approximately perpendicular in relation to the crystal planes {100} or the equivalent crystal planes of the fluoride crystal. In lens systems consisting of at least two fluoride crystal lenses, it is useful to arrange the fluoride crystal lenses in such a way that they are twisted in relation to each other. The lens axes of the fluoride crystal lenses can thus point in crystal direction (111) or (110), in addition to direction (100). It is also possible to reduce the disruptive influence of birefringence by using groups with twisted (100) lenses and groups with other twisted lenses (111) or other twisted (110) lenses. The disruptive influence of birefringence can be reduced further by providing the optical element with a compensating coating.