Abstract:
A device for determining the surface topology and associated colour of a structure, such as a teeth segment, includes a scanner for providing depth data for points along a two-dimensional array substantially orthogonal to the depth direction, and an image acquisition means for providing colour data for each of the points of the array, while the spatial disposition of the device with respect to the structure is maintained substantially unchanged. A processor combines the colour data and depth data for each point in the array, thereby providing a three-dimensional colour virtual model of the surface of the structure. A corresponding method for determining the surface topology and associated colour of a structure is also provided.
Abstract:
An electron microscope (10) is adapted to enable spectroscopic analysis of a sample (16). A parabolic mirror (18) has a central aperture (20) through which the electron beam can pass. The mirror (18) focuses laser illumination from a transverse optical path (24) onto the sample, and collects Raman and/or other scattered light, passing it back to an optical system (30). The mirror (18) is retractable (within the vacuum of the electron microscope) by a sliding arm assembly (22).
Abstract:
Es wird bereitgestellt ein Optiksystem, insbesondere Mikroskop, mit einer Optikeinheit (17) und einem Kollimator (1), der in einem Strahlengang des Optiksystems der Optikeinheit (17) vor- oder nachgeordnet ist, wobei die Optikeinheit (17) einem dem Strahlengang zugeführten Strahlenbündel einen vorbestimmten Farblängsfehler einprägt und das Strahlenbündel auf den Kollimator (1) als divergierendes oder paralleles Strahlenbündel trifft und von diesem in ein paralleles oder konvergierendes Strahlenbündel umgewandelt wird, wobei der Kollimator (1) zumindest eine Linse (L) sowie einen gekrümmten Spiegel (4) aufweist, der den Strahlengang so faltet, daß das zugeführte Strahlenbündel die Linse (4) zweimal durchläuft.
Abstract:
A spectrometer (20) is formed from two supports (10, 30). A first of the supports (10) has a diffraction grating (11) for dispersing light, source locating means (12) for locating a source of said light, and detector locating means (13) for locating a detector of said dispersed light. The other support is a mirror support (30) having a body and at least two reflective surfaces (31, 32) integrally formed with the body of the support (30). In preferred embodiments, one of the reflective surfaces may be divided into segments (32, 32'; 33). The spectrometer (20) can be cheaply mass-produced. In aspects of the invention, the distances between the source, detector and dispersive means are accurately fixed during manufacture in a simple and inexpensive manner.
Abstract:
A wavelength discriminator designed to collect broadband, multiple wavelength input energy, to isolate specific narrow bands of interest, and to image such narrow bands of interest upon closely spaced, separate detectors. This discriminator comprises optical devices (22, 18) for directing incoming radiant energy of a certain quality and involving a wide range of wavelengths through first (26a) and second (26b) wavelength selective reflectors separated by a medium that transmits the wavelengths of interest. The wavelength selective reflectors in accordance with this invention are in a non-parallel configuration and disposed in a double pass geometrical arrangement wherein energy of a certain wavelength reflected from the second wavelength selective reflector (26b) passes back through the first wavelength selective reflector (26a), with the energy from the first and second wavelength reflectors thereafter being directed onto respective detectors (32a and 32b). An embodiment involving a third wavelength selective reflector (26c) grouped with the first and second reflectors may be utilized, wherein energy of a different wavelength reflected from the third wavelength selective reflector passes back through both the second and first wavelength selective reflectors, with the selected wavelengths thereafter falling upon three separate detectors (32a, 32b and 32c) of the array.
Abstract:
Un discriminateur de longueurs d'ondes capte de l'énergie à large bande et à longueurs d'ondes multiples, isole des bandes étroites spécifiques d'intérêt et projette une image de ces bandes étroites d'intérêt sur des détecteurs séparés très rapprochés. Le discriminateur comprend des dispositifs optiques (22, 18) de guidage d'une certaine qualité d'énergie rayonnante qu'il reçoit et ayant une large bande de longueurs d'ondes à travers un premier (26a) et un deuxième (26b) réflecteur sélectif de longueurs d'ondes séparés par un milieu qui transmet les longueurs d'ondes d'intérêt. Les réflecteurs sélectifs de longueurs d'ondes sont disposés selon un agencement géométrique non-parallèle et à double passage, de sorte qu l'énergie ayant une certaine longueur d'ondes réfléchie par le deuxième réflecteur sélectif de longueurs d'ondes (26b) traverse à nouveau le premier réflecteur sélectif (26a), l'énergie réfléchie par les premier et deuxième réflecteurs étant ensuite dirigée vers des détecteurs respectifs (32a et 32b). On peut aussi utiliser un autre mode de réalisation dans lequel un troisième réflecteur sélectif de longueurs d'ondes (26c) est ajouté aux deux autres réflecteurs; l'énergie ayant une longueur d'ondes différente réfléchie par le troisième réflecteur sélectif traverse à nouveau les premier et deuxième réflecteurs sélectifs, et les longueurs d'ondes sélectionnées tombent ensuite sur trois détecteurs séparés (32a, 32b et 32c) de l'agencement.
Abstract:
The invention relates to controllable Fabry-Perot interferometers which are produced with micromechanical (MEMS) technology. Micromechanical interferometers of the prior art have a disadvantage of significantly attenuating infrared radiation. In the inventive solution there is a gap in at least one mirror, serving as a layer of the mirror. The other layers of the mirrors can be made of polycrystalline silicon, which has a negligible attenuation at the infrared range. It is also preferable to provide a hole or a recess in a substrate at the optical area of the interferometer.
Abstract:
The present invention provides a method and compact apparatus for laser induced breakdown atomic emission spectroscopy from a targeted sample having a laser generating a laser beam, the laser beam directed to the sample, optical means for manipulating the laser beam in order maximize laser fluency at the target surface of the sample, the laser beam generating ablation and plasma emission from the sample at the target surface, an emission spectrometer having a detector for detecting a plasma plume from the plasma emission.
Abstract:
A light radiating portion (11a, 11b, 12, 51, 52) radiates light with wavelength »1 having predetermined absorptivity for an object (16) and light with wavelength »2 having smaller absorptivity for the object (16) than the wavelength »1, to a target, so as to scan in 2-dimensional directions. A light receiving portion (17) receives scattered lights reflected by the target based on light with wavelength »1 and light with wavelength »2. A measuring portion (18) generates information used for detection of the object (16) at the target, based on difference between the two scattered lights with wavelength »1 and wavelength »2 received by the light receiving portion (17). An output portion (53) outputs whether or not the object is present at the target, by 2-dimensional area information, based on scanning by the light radiating portion (11a, 11b, 12, 51, 52) and information generated by the measuring portion (18).
Abstract:
A light radiating portion (11a, 11b, 12, 51, 52) radiates light with wavelength λ1 having predetermined absorptivity for an object (16) and light with wavelength λ2 having smaller absorptivity for the object (16) than the wavelength λ1, to a target, so as to scan in 2-dimensional directions. A light receiving portion (17) receives scattered lights reflected by the target based on light with wavelength λ1 and light with wavelength λ2. A measuring portion (18) generates information used for detection of the object (16) at the target, based on difference between the two scattered lights with wavelength λ1 and wavelength λ2 received by the light receiving portion (17). An output portion (53) outputs whether or not the object is present at the target, by 2-dimensional area information, based on scanning by the light radiating portion (11a, 11b, 12, 51, 52) and information generated by the measuring portion (18).