Abstract:
A process for detecting oil or lubricant contamination in a manufactured product, the process comprising adding a fluorescent taggant to oils or lubricants contained in processing machinery for said product, conveying said product past an infrared detection apparatus, irradiating said product with infrared radiation from said detection apparatus as it passes the detection apparatus, and detecting infrared radiation emitted from said irradiated product. The taggant can be in the form of a composition containing a Stokes-shifting taggant, which absorbs radiation at a first wavelength and emits radiation at a second wavelength, different from said first wavelength, dissolved or dispersed in an oil or lubricant.
Abstract:
Die Erfindung betrifft ein Verfahren zum Messen der Lebensdauer eines angeregten Zustandes in einer Probe, insbesondere einer Fluoreszenzlebensdauer, sowie eine Vorrichtung zum Ausführen eines solchen Verfahrens. Zunächst erfolgen das Erzeugen eines Anregungslichtpulses (8) und das Beleuchten eines Probenbereichs mit dem Anregungslichtpuls. Anschließend wird eine erste digitale Datenfolge (25) erzeugt, die den zeitlichen Lichtleistungsverlauf des Anregungslichtpulses repräsentiert und ein erster Schaltzeitpunkt (27) aus der ersten digitalen Datenfolge ermittelt. Außerdem wird das von dem Probenbereich ausgehende Detektionslicht (18) mit einem Detektor (20) detektiert und eine zweite digitale Datenfolge (26) erzeugt, die den zeitlichen Lichtleistungsverlauf des Detektionslichtes repräsentiert, sowie ein zweiter Schaltzeitpunkt (28) aus der zweiten digitalen Datenfolge ermittelt. Schließlich erfolgt das Berechnen der zeitlichen Differenz zwischen dem ersten und dem zweiten Schaltzeitpunkt.
Abstract:
Die Erfindung betrifft ein Verfahren zum Messen der Lebensdauer eines angeregten Zustandes in einer Probe, insbesondere einer Fluoreszenzlebensdauer, sowie eine Vorrichtung zum Ausführen eines solchen Verfahrens. Zunächst erfolgen das Erzeugen eines Anregungslichtpulses (8) und das Beleuchten eines Probenbereichs mit dem Anregungslichtpuls. Anschließend wird eine erste digitale Datenfolge (25) erzeugt, die den zeitlichen Lichtleistungsverlauf des Anregungslichtpulses repräsentiert und ein erster Schaltzeitpunkt (27) aus der ersten digitalen Datenfolge ermittelt. Außerdem wird das von dem Probenbereich ausgehende Detektionslicht (18) mit einem Detektor (20) detektiert und eine zweite digitale Datenfolge (26) erzeugt, die den zeitlichen Lichtleistungsverlauf des Detektionslichtes repräsentiert, sowie ein zweiter Schaltzeitpunkt (28) aus der zweiten digitalen Datenfolge ermittelt. Schließlich erfolgt das Berechnen der zeitlichen Differenz zwischen dem ersten und dem zweiten Schaltzeitpunkt.
Abstract:
Provided is a nonlinear optical device capable of alleviating, without the need for a complicated compensation mechanism, temporal broadening and the waveform distortion resulting from a group-velocity dispersion slope, to thereby irradiate an object with short optical pulses having high peak power. The nonlinear optical device includes a short optical pulse source (10) for generating short optical pulses and a short optical pulse delivery system (20) for delivering the short optical pulses generated from the short optical pulse source to an object, in which there is generated substantially no nonlinear optical effect and there is substantially no amount of group-velocity dispersion, the short optical pulse source generates short optical pulses, and the short optical pulses have a spectral width (full width at half maximum) λ FWHM satisfying λ 1 λ FWHM 2 .
Abstract:
An inspection system may be configured to inspect objects, such as semiconductor wafers, using narrow-pulse broadband illumination. The illumination may be obtained in some embodiments using a laser configured to emit light into a material having a spectral broadening effect. The inspection system can include various filters which may be selectively placed in the illumination and/or imaging path in order to tune the spectrum of light impinging on the wafer and the light that is detected. The filters may include selectable filters, fixed filters, and filters whose characteristics can be adjusted in-place. In some embodiments, filters may be used to match the illumination/detection spectra of different tools. Additionally, the broadband illumination may be tuned between inspections and/or during inspections for best results. The system may support Fourier filtering whereby light, related to repetitive features of the object and in one or more wavelength sub-bands of the illumination, may be filtered.
Abstract:
Methods, apparatus, and system, implementing and using techniques for detecting a presence of one or more target analytes in particular regions of interest of one or more samples. One or more samples including objects and one or more target analytes are provided. Some of the target analytes are labeled with a fluorophore and are bound to some of the objects in the samples. The samples are illuminated with fluorescence inducing light and fluorescent light is collected from one or more regions of the one or more samples. At least one anisotropy measurement of the samples is performed to identify regions of interest where one or more target analytes are bound to the objects. The collected fluorescent light from the regions of interest is analyzed to determine a presence of target analytes that are bound to the objects in the one or more samples.
Abstract:
In order to sort diamonds from ore particles to moving on a wide belt conveyor 1, a line is irradiated across the conveyor 1 using a scanning laser 3 so as to excite Raman emission from diamonds, and the emitted radiation is passed through a narrow band pass filter 9 and a laser blocking filter 13 to be detected by a photomultiplier tube 14. The narrow band pass filter 9 allows to pass only the anti-Stokes radiation appropriate to diamonds. The position of the article 2 along the line is determined by a time domain technique, and diamonds are blown by an air jet 23 out of their normal path into a bin 24.
Abstract:
The quality of image of an object (10) hidden inside a highly scattering semi-opaque disordered medium (11) is improved by using space gate imaging or time gate imaging or space time gate imaging. In space gate imaging, a small segment of the object is illuminated at a time. The scattered light is passed through a spatial noise filter (12). On the image plane, an aperture (17) is open at the position of the image segment which correspond to the segment of the illuminated object. A full image is obtained by scanning the object segment by segment and simultaneously recording the signal at the corresponding image segment. In time gate imaging, the unscattered (i.e. ballistic) portion of the pulse which contains the information of the image is temporally separated from the other (i.e. scattered) portions which contains the noise using a ultrafast laser pulse and temporal gating devices. The technique is in space-time gate imaging, the two techniques are combined to produce an image with a much higher signal to noise ratio. The time separation between the ballistic and scattered light may be increased by increasing thickness of random medium or by introducing small scatters into the random medium so as to make the medium more random. The signal to noise ratio can also be increased by making the random medium less random (so that there will be less scattered light). In addition, the signal to noise ratio can be increased by introducing an absorbing dye into the medium or by using a wavelength for the light which is in the absorption spectrum of the random medium or by making the medium more ordered (i.e. less random).
Abstract:
In order to sort diamond-bearing ore particles (2) conveyed on a wide belt (1), exciting radiation strikes the belt along an extended line. Diamonds are detected by passing the emitted radiation through a narrow band pass filter (9) sensing the Raman radiation with a photo-multiplier tube (14). Only axial-parallel rays passing through the filter reach the photo-multiplier tube. An array of side-by-side converging lenses (6) can be used, the lenses being of rectangular shape as seen looking along the optical axis with their long axes at right angles to the line of radiation. The ore particles are in the plane of the foci of the lenses, so that radiation emitted by each particle is passed in parallel rays through the filter. In order to stop rays having an angle of incidence greater than the maximum permitted, to avoid identifying non-diamond material as diamond, a further converging lens (10) is used to focus the rays at the plane of a telecentric stop (11). The stop stops rays having too great an angle of incidence. The position of the diamond can be detected for instance by a CCD array or by a time domain technique. The apparatus can be monitored by giving a signal when the radiation from tracer stones and holes on either side of the belt, differs from predetermined values.