摘要:
It is possible to provide an electron emission cathode, an electron emission source having a high-luminance and narrow energy width by using diamond and an electronic device using them. The diamond electron discharge cathode has a monocrystal diamond at least at a part of it. The diamond electron emission cathode has a columnar shape including a sharpened section and a heating section. The sharpened section has an electron emission section. The electron emission section and the heating section are formed by diamond semiconductor, which is formed by a p-type semiconductor containing 2 × 1015 cm-3 of p-type impurities or above. The electron emission section has the semiconductor. A metal layer is formed on the surface of the electron emission cathode. The metal layer exists at least at a part of the heating section. The distance from the electron emission section to the position nearest to the end of the metal layer is 500 μm. A pair of current introduction terminals supplies current to the heating section to heat the heating section. A part of the introduced electrons is emitted from the electron emission section.
摘要:
It is possible to provide an electron emission cathode, an electron emission source having a high-luminance and narrow energy width by using diamond and an electronic device using them. The diamond electron discharge cathode has a monocrystal diamond at least at a part of it. The diamond electron emission cathode has a columnar shape having a sharpened portion at a part of the electron emission section and is formed by at least two types of semiconductor having different electric characteristics. One of the types constituting the semiconductor is an n-type semiconductor containing 2 × 1015 cm-3 of n-type impurities or above and the other type is a p-type semiconductor containing 2 × 1015 cm-3 of p-type impurities or above. The p-type semiconductor is in contact with the n-type semiconductor and negative potential is applied to the n-type semiconductor with respect to the p-type semiconductor so that electrons flow from the n-type semiconductor to the p-type semiconductor by a pair of current introduction terminals, and the n-type semiconductor contains such a component that the electrons flow into the electron emission unit.
摘要:
The invention relates to an electron beam exposure apparatus for transferring a pattern onto the surface of a target (14), comprising: a beamlet generator for generating a plurality of electron beamlets (5a, 5b); a modulation array for receiving said plurality of electron beamlets, comprising a plurality of modulators for modulating the intensity of an electron beamlet; a controller, connected to the modulation array for individually controlling the modulators, an adjustor, operationally connected to each modulator, for individually adjusting the control signal of each modulator; a focusing electron optical system comprising an array of electrostatic lenses (7) wherein each lens focuses a corresponding individual beamlet, which is transmitted by said modulation array, to a cross section smaller than 300 nm, and a target holder for holding a target with its exposure surface onto which the pattern is to be transferred in the first focal plane of the focusing electron optical system.
摘要:
The invention provides an exposure apparatus (100) including a formation module (122) which forms charged particle beams with different irradiation positions on a specimen. The formation module (122) includes: a particle source (20) which emits the charged particle beams from an emission region (21) in which a width in a longitudinal direction is different from and a width in a lateral direction orthogonal to the longitudinal direction; an aperture array device (60) provided with openings (62) arranged in an illuminated region (61) in which a width in a longitudinal direction is different from a width in a lateral direction orthogonal to the longitudinal direction; illumination lenses (30, 50) provided between the particle source (20) and the aperture array device (60); and a beam cross-section deformation device (40) which is provided between the particle source (20) and the aperture array device (60), and deforms a cross-sectional shape of the charged particle beams into an anisotropic shape by an action of a magnetic field or an electric field.
摘要:
There is disclosed a method of controlling an electron gun without causing decreases in brightness of the electron beam if a current-limiting aperture cannot be used. The electron gun (10) has a cathode (11), a Wehnelt electrode (12), a control electrode (13), an anode (14), and a controller (22). The Wehnelt electrode (12) has a first opening in which the tip of the cathode is inserted, and focuses thermal electrons emitted from the tip of the cathode (11). The thermal electrons emitted from the tip of the cathode (11) are caused to pass into a second opening by the control electrode (13). The anode (14) accelerates the thermal electrons emitted from the cathode (11) such that the thermal electrons passed through the second opening pass through a third opening and impinge as an electron beam (B1) on a powdered sample (8). The controller (22) sets the bias voltage and the control voltage based on combination conditions of the bias voltage and control voltage to maintain the brightness of the beam constant.
摘要:
The invention relates to a maskless lithography system for transferring a pattern onto the surface of a target. The system comprises a beamlet generator for generating a plurality of electron beamlets, a modulation array comprising a beamlet stop area and a beamlet blanker array comprising a beamlet blanking means for switching electron beamlets on and off, and, a focusing electron optical system, comprising at least one array of electrostatic lenses for focusing electron beamlets on said surface. The focusing optical system is adapted for maintaining the beamlets separate between the modulation array and the focusing electron optical system.
摘要:
The invention relates to an electron beam generator for generating an electron beam, comprising an electron source and an extractor. The combination of electron source and extractor in use forms a negative lens, wherein said extractor has a positive voltage with respect to the source. The extractor and the electron source are positioned such that, in use, a space charge limited region is present between them. In an embodiment, the extractor is a planar extractor. In another embodiment, the source is a thermionic source.. The generator may comprise an illumination system for collimating the electron beam.
摘要:
An electron beam emitter includes an electron generator for generating electrons. The electron generator can have a housing containing at least one electron source for generating the electrons. The at least one electron source has a width. The electron generator housing can have an electron permeable region spaced from the at least one electron source for allowing extraction of the electrons from the electron generator housing. The electron permeable region can include a series of narrow elongate slots and ribs formed in the electron generator housing and extending laterally beyond the width of the at least one electron source. The electron permeable region can be configured and positioned relative to the at least one electron source for laterally spreading the electrons that are generated by the at least one electron source.