Abstract:
Die Erfindung betrifft ein Verfahren zur Ermittlung zumindest einer Prüfeigenschaft eines Prüfgegenstands und eine Messvorrichtung, welche geeignet ist, ein Messfeld (3) unter einer Vielzahl an Anstrahlungskombinationen aus Einstrahlungswinkel (α) und/oder Wellenlängenbereich (A) mit elektromagnetischer Strahlung (5) anzustrahlen und die Intensität der jeweils von dem Messfeld unter zumindest einem Abstrahlungswinkel (β) remittierten elektromagnetischen Strahlung (5) zu messen. Die Prüfeigenschaft weist zumindest ein definiertes messbares Einzelmerkmal auf, wobei das Einzelmerkmal oder eine definierte Merkmalskombination mehrerer solcher Einzelmerkmale die Herkunft und/oder Identität des Prüfgegenstandes (1) belegt, wobei das Einzelmerkmal oder die Merkmalskombination messbar ist, wenn sie durch die elektromagnetische Strahlung (5) auf eine durch eine Auswahl an Anstrahlungkombinationen definierte Art und Weise optisch angeregt wird. Das Einzelmerkmal oder die Merkmalskombination wird mit der Messvorrichtung (4) in dieser Art und Weise angeregt und gemessen.
Abstract:
A spectroscopic assembly (7) is provided. The spectroscopic assembly includes a thermal isolation platform, a gas reference cell (40) encasing a gas (41) and attached to the thermal isolation platform, the gas reference cell (40) having at least one optically-transparent window (415), and at least one heater configured to raise a temperature of the encased gas (41). When a beamsplitter (30) is configured to reflect a portion of an input optical beam (20) emitted by a laser (10) to be incident on the at least one optically-transparent window (415) of the gas reference cell (40), the reflected portion of the input optical beam (20) is twice transmitted through the gas (41). When a detector (350) is configured to receive the optical beam (25) twice transmitted through the gas (41), a feedback signal (50) is provided to the laser (10) to stabilize the laser.
Title translation:OPTOPAARE MIT ELEKTROLUMINESZENZ UND EINER TEMPERATURKOMPENSATIONSFUNKTION ZUR VERWENDUNG in EINEM OPTISCHEN GASABSORPTIONSANALYSATOR
Abstract:
Optopair for use in sensors and analyzers of gases such as methane, and a fabrication method therefor is disclosed. It comprises: a) an LED, either cascaded or not, having at least one radiation emitting area, whose spectral maximum is de-tuned from the maximum absorption spectrum line of the gas absorption spectral band; and b) a Photodetector, whose responsivity spectral maximum can be either de-tuned from, or alternatively completely correspond to the maximum absorption spectrum line of the absorption spectral band of the gas. Modeling the LED emission and Photodetector responsivity spectra and minimizing the temperature sensitivity of the optopair based on the technical requirements of the optopair signal registration circuitry, once the spectral characteristics of the LED and Photodetector materials and the temperature dependencies of said spectral characteristics are determined, provides the LED de-tuned emission and Photodetector responsivity target peaks respectively.
Abstract:
A method for determining spectral calibration data (λcal(Sd), Sd,cal(λ)) of a Fabry-Perot interferometer (100) comprises: forming a spectral notch (NC2) by filtering input light (LB1) with a notch filter (60) such that the spectral notch (NC2) corresponds to a transmittance notch (NC1) of the notch filter (60), measuring a spectral intensity distribution (M(Sd)) of the spectral notch (NC2) by varying the mirror gap (dFP) of the Fabry-Perot interferometer (100), and by providing a control signal (Sd) indicative of the mirror gap (dFP), and determining the spectral calibration data (λcal(Sd), Sd,cal(λ)) by matching the measured spectral intensity distribution (M(Sd)) with the spectral transmittance (TN(λ)) of the notch filter (60).
Abstract:
A spectrometer 1A includes a light detection element 20 provided with a light passing part 21, a first light detection part 22, and a second light detection part 26, a support 30 fixed to the light detection element 20 such that a space S is formed, a first reflection part 11 provided in the support 30 and configured to reflect light L1 passing through the light passing part 21 in the space S, a second reflection part 12A provided in the light detection element 20 and configured to reflect the light L1 reflected by the first reflection part 11 in the space S, and a dispersive part 40A provided in the support 30 and configured to disperse and reflect the light L1 reflected by the second reflection part 12A to the first light detection part 22 in the space S. A plurality of second light detection parts 26 is disposed in a region surrounding the second reflection part 12A.
Abstract:
A spectrometer configurable for field analyses of chemical properties of a material is provided. The spectrometer includes: at least one sensor adapted for providing Fourier transform infrared spectroscopy (FTIR) surveillance and at least another sensor for providing Raman spectroscopy surveillance. The spectrometer can be provided with a user accessible instruction set for modifying a sampling configuration of the spectrometer. A method of determining the most likely composition of a sample by at least two technologies using the spectrometer is also provided.
Abstract:
A spectral sensor 1A includes a Fabry-Perot interference filter 10 which has a light transmission region 11; a light detector 3 which detects light having transmitted the light transmission region 11; spacers 4A and 4B which support the Fabry-Perot interference filter 10 in a surrounding region of the light transmission region 11; and a die bond resin 5 which adheres the Fabry-Perot interference filter 10 and the spacers 4A and 4B to each other. The die bond resin 5 has one opening A2 communicating with an inner side of the surrounding region and an outer side of the surrounding region, when viewed from a light transmission direction in the light transmission region 11.