Abstract:
A method of forming a fluorinated molecular entity includes reacting in a reaction mixture an aromatic halide, copper, a fluoroalkyl group, and a ligand. The aromatic halide includes an aromatic group and a halogen substituent bonded to the aromatic group. The ligand includes at least one group-V donor selected from phosphorus and an amine. The overall molar ratio of copper to aromatic halide in the reaction mixture is from 0.2 to 3. The method further includes forming a fluoroalkylarene including the aromatic group and the fluoroalkyl group bonded to the aromatic group. A composition, which may be used in the method, consists essentially of copper, the fluoroalkyl group, and the ligand, where the molar ratio of copper to the fluoroalkyl group is approximately 1.
Abstract:
The invention relates to a process for preparing aryl- and heteroarylacetic acids and derivatives thereof by reaction of aryl or heteroaryl halides with malonic diesters in the presence of a palladium catalyst, one or more bases and optionally a phase transfer catalyst. This process enables the preparation of a multitude of functionalized aryl- and heteroarylacetic acids and derivatives thereof, and more particularly also the preparation of arylacetic acids with sterically demanding substituents.
Abstract:
The disclosure relates to catalytically active carbocatalysts, e.g., a graphene oxide or graphite oxide catalyst suitable for use in a variety of chemical transformations. In one embodiment, it relates to a method of catalyzing a chemical reaction of an organic molecule by reacting the organic molecule in the presence of a sufficient amount of graphene oxide or graphite oxide for a time and at a temperature sufficient to allow catalysis of a chemical reaction. According to other embodiments, the reaction may be an oxidation reaction, a hydration reaction, a dehydrogenation reaction, a condensation reaction, or a polymerization reaction. Some reactions may include auto-tandem reactions. The disclosure further provides reaction mixtures containing an organic molecule and graphene oxide or graphite oxide in an amount sufficient to catalyze a reaction of the organic molecule.
Abstract:
Provided is a process by which pyrimidinylacetonitrile derivatives can be prepared easily and efficiently from industrially available raw materials. Also provided are intermediates for the synthesis of the derivatives. A process for the preparation of pyrimidinylacetonitrile derivatives represented by general formula (3) [wherein X is a halogen atom, and R is an alkoxymethyl group], characterized by reacting a 2,4-dihalogeno-6-nitrobenzene derivative represented by general formula (1) [wherein X and R are each as defined above] with 4,6-dimethoxy-2-cyanomethylpyrimidine represented by general formula (2) [wherein Me represents a methyl group] in the presence of a base; and intermediates for the synthesis of the pyrimidinylacetonitrile derivatives.
Abstract:
A method for producing a biaryl compound represented by the formula (2)
Ar-Ar (2)
wherein Ar represents an aromatic group which can have a substituent, comprising conducting a coupling reaction of a compound represented by the formula (1)
Ar-Cl (1)
wherein Ar represents the same meaning as defined above, in the presence of copper metal and a copper salt.
Abstract:
The present invention relates to a process fo the preparation of compounds of formula (I) wherein the substituents are as defined in claim 1, by a) reaction of a compound of formula (II) to form a compound of formula (III) b) reaction of that compound in the presence of a base to form a compound of formula (IV) c) conversion of that compound in the presence ofa reducing agent into a compound of formula (I).