摘要:
An angle-sensitive pixel (ASP) device that uses the Talbot effect to detect the local intensity and incident angle of light includes two local diffraction gratings stacked above a photodiode. When illuminated by a plane wave, the upper grating generates a self-image at a selected Talbot depth. The second grating, placed at this depth, blocks or passes light depending upon incident angle. Several such structures, tuned to different incident angles, are sufficient to extract local incident angle and intensity. Arrays of such structures are sufficient to localize light sources in three dimensions without any additional optics.
摘要:
An orthogonal process for photolithographic patterning organic structures is disclosed. The disclosed process utilizes fluorinated solvents or supercritical CO2 as the solvent so that the performance of the organic conductors and semiconductors would not be adversely affected by other aggressive solvent. One disclosed method may also utilize a fluorinated photoresist together with the HFE solvent, but other fluorinated solvents can be used. In one embodiment, the fluorinated photoresist is a resorcinarene, but various fluorinated polymer photoresists and fluorinated molecular glass photoresists can be used as well. For example, a copolymer perfluorodecyl methacrylate (FDMA) and 2-nitrobenzyl methacrylate (NBMA) is a suitable orthogonal fluorinated photoresist for use with fluorinated solvents and supercritical carbon dioxide in a photolithography process. The combination of the fluorinated photoresist and the fluorinated solvent provides a robust, orthogonal process that is yet to be achieved by methods or devices known in the art.
摘要:
Cationic poly(ester amide) (PEA)-based hydrogels are provided. The hydrogels are fabricated from unsaturated L-arginine base poly(ester-amide) (UArg-PEA) precursors, pluronicDA precursors, or a combination of UArg-PEA and pluronicDA precursors at predetermined precursor composition ratios. PluronicDA/UArg-PEA hybrid hydrogels and pure pluronicDA based hydrogels are thermoresponsive and biodegradable, while pure UArg-PEA base hydrogels are biodegradable but not thermoresponsive. UArg-PEA based, pluronicDA based and hybrid hydrogels can be synthesized from unsaturated arginine-based PEA salts and/or unsaturated pluronic acid polymers. Unsaturated pluronic acid polymers can be synthesized by reacting pluronic acid with acryloylchloride to provided functional vinyl groups at the two chain ends of pluronic acid. The hydrogels can be used to carry and/or release molecules or compounds such as bioactive compounds, and can function as biologic carriers for a variety of biomedical applications.