Abstract:
An end member assembly can include a first end member section and a second end member section that together form an end member volume. A partition section is provided separately and is disposed within the end member volume to separate the end member volume into at least two volume portions. At least one passage extends through the partition section and at least one control device is disposed in fluid communication along the passage. The control device substantially fluidically isolates the two volume portions under conditions of use below a predetermined differential pressure threshold. The control device permits fluid communication between the two volume portions under conditions of use in which the predetermined pressure threshold is exceeded. Gas spring assemblies including such an end member assembly as well as suspension systems and methods of manufacture are also included.
Abstract:
The invention relates to an article comprising a main body (6, 7, 8) that consists of a polymer material having elastic properties, particularly an air spring bellows (2), a metal-rubber element or a vibration damper. In order for fire-retardant properties to be improved, the article is provided, partially or fully, with a cover (9) formed from at least one flat textile structure and/or at least one three-dimensional textile structure and/or at least one shrink film. The cover can be fire-retardant itself or can be equipped to be fire-retardant.
Abstract:
Suspension systems include a gas spring and gas damper assembly that is adapted for operation in first and second conditions. In the first condition, the assembly provides spring and damping functionality across a first range of travel. In the second condition, the assembly provides actuator functionality with a second range of travel that is substantially less than the first range of travel. A pressurized gas system is in fluid communication with the assembly. A control system is in communication with the assembly and the pressurized gas system. The control system is operative to actuate one or more control devices to transfer pressurized gas and thereby transition the assembly from between the first and second conditions. Methods of operating such as suspension system are also included.
Abstract:
A gas spring and gas damper assembly includes a gas spring and a gas damper. The gas spring includes a flexible spring member with opposing end members secured thereto and at least partially defining a spring chamber. The gas damper includes an inner sleeve that is at least partially received within one of the end members and at least partially forms a damping chamber. A damper piston assembly is received within the damping chamber and secured to the other of the end members. An elongated damping passage fluidically connects the damping chamber and the spring chamber. Suspension systems and methods are also included.
Abstract:
A gas spring end member has an end member axis and is dimensioned for securement to an associated flexible spring member. The gas spring end member includes an end member wall with a base wall portion disposed transverse to the end member axis. An outer wall portion extends axially from along the base wall portion. A mounting wall portion is dimensioned to receivingly engage an associated end of the associated flexible spring member. An end wall portion extends peripherally about the end member axis and operatively connects the outer wall portion and the mounting wall portion to at least partially define an end member volume. An inner wall portion separates the end member volume into an end member reservoir disposed outward of the inner wall portion and an end member chamber disposed inward of the inner wall portion. Gas spring assemblies and suspensions systems are also included.
Abstract:
An air suspension in an embodiment includes: a cylinder; a piston rod; a rod-side member disposed on the lower end side of the piston rod; a diaphragm; an axle-side attachment member having an upper end side of which is fixed to an opening at a lower end of the rod-side member, the axle-side attachment member including a fixing section for fixing the piston rod and an attachment hole joined to an axle; a gas passage formed in the axle-side attachment member, one end of the gas passage being opened to an upper end face of the axle-side attachment member and the other end of the gas passage being opened to a side section of the axle-side attachment member; and a valve section provided at the opening of the other end of the gas passage.
Abstract:
A gas spring and gas damper assembly (AS1) includes a first end member (300) and a second end member (400) that is spaced from the first end member (300). A flexible spring member (200) is secured between the first (300) and second (400) end members and at least partially defines a spring chamber (202) therebetween. A first damper reservoir (322) has a substantially-fixed volume. An elongated gas damping passage (306) is connected in fluid communication between the spring chamber (202) and the first damper reservoir (322). A suspension system including such a gas spring and gas damper assembly as well as a method of assembly are also included.
Abstract:
Flexibler, durch ein fließfähiges Medium unter Druck befüllbarer hohler Balg aus elastomerem Material, insbesondere hydraulisch oder pneumatisch betriebener Aktuator in Form einer Hebevorrichtung oder einer Höheneinstellung für Lasten,oder Bauteile, wobei zwischen einander benachbarten Balgteilen und/oder zwischen Balgteilen und Anschlussteilen ringförmige Gleitelemente, insbesondere als Gleitscheiben ausgebildete Gleitelemente angeordnet sind.