摘要:
The invention provides new methods for synthesis of ClusterBoron® (B18H22). Preferred methods of the invention include generation of the conjugate acid of B20H182- and degradation of the acid in solution to produce B18H22 in high yields and high purity. The invention further provides isotopically enriched boranes, particularly isotopically enriched 10B18H22 and 11B18H22.
摘要:
A multipurpose ion implanter beam line configuration constructed for enabling implantation of common monatomic dopant ion species and cluster ions, the beam line configuration having a mass analyzer magnet defining a pole gap of substantial width between ferromagnetic poles of the magnet and a mass selection aperture, the analyzer magnet sized to accept an ion beam from a slot-form ion source extraction aperture and to produce dispersion at the mass selection aperture in a plane corresponding to the width of the beam, the mass selection aperture capable of being set to a mass-selection width sized to select a beam of the cluster, the mass selection aperture also capable of being set to a substantially narrower mass-selection width and the analyzer magnet having a resolution at the mass selection aperture sufficient to enable selection of a beam of monatomic dopant ions of substantially a single atomic or molecular weight.
摘要:
An ion source is disclosed for providing a range of ion beams consisting of either ionized clusters, such as B2Hx+, B5Hx+, B10Hx+, B18Hx+, P4+ Or As4+, or monomer ions, such as Ge+, In+, Sb+, B+, As+, and P+, to enable cluster implants and monomer implants into silicon substrates for the purpose of manufacturing CMOS devices, and to do so with high productivity. The range of ion beams is generated by a universal ion source in accordance with the present invention which is configured to operate in two discrete modes: an electron impact mode, which efficiently produces ionized clusters, and an arc discharge mode, which efficiently produces monomer ions.
摘要:
A method is proposed for the fabrication of the gate electrode of a semiconductor device such that the effects of gate depletion are minimized. The method is comprised of a dual deposition process wherein the first step is a very thin layer that is doped very heavily by ion implantation. The second deposition, with an associated ion implant for doping, completes the gate electrode. With the two-deposition process, it is possible to maximize the doping at the gate electrode/gate dielectric interface while minimizing risk of boron penetration of the gate dielectric. A further development of this method includes the patterning of both gate electrode layers with the advantage of utilizing the drain extension and source/drain implants as the gate doping implants and the option of offsetting the two patterns to create an asymmetric device. A method is also provided for the formation of shallow junctions in a semiconductor substrate by diffusion of dopant from an implanted layer contained within a dielectric layer into the semiconductor surface. Further, the ion implanted layer is provided with a second implanted species, such as hydrogen, in addition to the intended dopant species, wherein said species enhances the diffusivity of the dopant in the dielectric layer.
摘要:
The invention provides new methods for the synthesis of isotopically enriched metal borohydrides, metal tetrahydroundecaborate salts, and decaborane from isotopically enriched 10B-boric acid or 11B-boric acid. The invention is particularly useful for synthesis of isotopically enriched sodium or lithium borohydride, MB11H14 (where M is Li, Na, K, or alkylammonium), and decaborane.