摘要:
The invention has an object of providing an economical and highly efficient process for producing a cyclohexanone compound such as cyclohexanone. An aspect of the invention resides in a process for producing a cyclohexanone compound by performing hydrogenation reaction of a phenol compound in a gas phase in the presence of a palladium catalyst supported on a carrier to produce the corresponding cyclohexanone compound, wherein the hydrogenation reaction is carried out in the presence of at least one nitrogen compound selected from ammonia, amine compounds and heteroaromatic compounds.
摘要:
A method of forming a fluorinated molecular entity includes reacting in a reaction mixture an aromatic halide, copper, a fluoroalkyl group, and a ligand. The aromatic halide includes an aromatic group and a halogen substituent bonded to the aromatic group. The ligand includes at least one group-V donor selected from phosphorus and an amine. The overall molar ratio of copper to aromatic halide in the reaction mixture is from 0.2 to 3. The method further includes forming a fluoroalkylarene including the aromatic group and the fluoroalkyl group bonded to the aromatic group. A composition, which may be used in the method, consists essentially of copper, the fluoroalkyl group, and the ligand, where the molar ratio of copper to the fluoroalkyl group is approximately 1.
摘要:
Among other things, this disclosure provides an olefin oligomerization system and process, the system comprising: a) a transition metal compound; b) a pyrrole compound having a hydrogen atom on at the 5- position or the 2- and 5- position of a pyrrole compound and having a bulky substituent located on each carbon atom adjacent to the carbon atom bearing a hydrogen atom at the 5- position or the 2- and 5- position of a pyrrole compound. These catalyst system have significantly improved productivities, selectivities to 1-hexene, and provides higher purity 1-hexene within the C6 fraction than catalyst systems using 2,4-dimethyl pyrrole.
摘要:
The invention provides a particulate material comprising porous polymeric microparticles having a mesoporous structure. A process for making the particles is also presented. The process comprises impregnating a porous microparticulate template material with a liquid comprising one or more monomers. The one or more monomers are then polymerized in and/or on the template material to form a polymer, and the template material is then removed to produce the particulate material.