Abstract:
A modular device for remote chemical material analysis with a basic function unit which is formed with a transport module (2), which is partly equipped with a mobile frame construction which is set up with at least a power supply (21) of the laser, a detection system (22), designed for plasma radiation dispersion according to the wavelength and its record, a control and evaluation block (23) in the form of PC and a control electronic block (24) and partly is connected with a laser module (4) which contains a laser head (41), which serves as a source of laser pulses, where the essence of the invention is that the laser module (4) is equipped with a laser beam router (42) of optional routing of laser pulses either into a stand-off module (6) when analyzed with a "Stand-Off LIBS" method or into a fiber module (8) when analyzed with a "Remote LIBS" method.
Abstract:
An aquatic environment water parameter testing system and related methods and chemical indicator elements. The aquatic environment water parameter testing system includes an electronics portion having an optical reader element and a sample chamber portion having a chemical indicator element which may be removably connected. A chemical indicator element may include an information storage and communication element used, in part, to provide identification of a chemical indicator of the chemical indicator element. Conductivity and/or temperature may be utilized to calibrate readings by the optical reader element. A chemical indicator element may also include a thin film material having particular optical characteristics tied to the light from a light source, such as a light source of an optical reader element.
Abstract:
The present invention provides novel microfluidic substrates and methods that are useful for performing biological, chemical and diagnostic assays. The substrates can include a plurality of electrically addressable, channel bearing fluidic modules integrally arranged such that a continuous channel is provided for flow of immiscible fluids.
Abstract:
A system for conducting an assay comprises a power source (16), a controller (13) for controlling the assay and a plurality of assay units (14) operatively connected to one another such that the controller can communicate with the assay units and the system is capable of conducting the assay. An assay device comprises a substantially circular body (24) having a plurality of chambers in fluid connection such that fluid can pass between said chambers and a central hub (200) having a sample inlet (202) disposed therein for receiving a sample.
Abstract:
A device is provided for combining two or more separate components of an optical analysis system, to use common entrance and exit apertures for optical measurements across a measurement space such as a stack, combustion chamber, duct or pipeline, in such way that the optical paths from the respective light sources to detectors are substantially the same, enabling multiple optical measurements over a single optical path or closely aligned optical paths with equivalent ambient conditions such as temperature and pressure distribution and background substance concentrations. The device and a set of interconnectable devices forming a modular system are useful, for example, in absorption spectroscopy, such as for measuring the amount fraction of the chemical constituents of a fluid in a measurement volume.
Abstract:
The present invention provides novel microfluidic substrates and methods that are useful for performing biological, chemical and diagnostic assays. The substrates can include a plurality of electrically addressable, channel bearing fluidic modules integrally arranged such that a continuous channel is provided for flow of immiscible fluids.
Abstract:
The present application provides a system (1) that comprises a mobile phone (25) to allow testing of samples from a patient at the point of care or environmental/industrial process monitoring tests to be performed in the field. The system (1) may be easily adapted for use with a variety of different mobile phones (25). The mobile phone (25) comprises an integrated camera (15). The system (1) further comprises an optical module (20) for receiving a sample for testing. The mobile phone (25) is configured to extract the intensity and/or color information from the camera (15).
Abstract:
The invention relates to means for the examination of a sample, wherein a first input light beam (L1) is totally internally reflected at a detection surface of a sample chamber (111), while a second input light beam (L1') is transmitted through the sample chamber (111). The resulting first and second output light beams (L2, L2') are detected and can be evaluated with respect to frustrated total internal reflection and optical absorbance, respectively. Preferably, both output light beams (L2, L2') are detected by a single image sensor (155).