摘要:
A method of analyzing a phase transformation process of a material comprises providing a spherical sample of the material, measuring and recording a first data series of core temperature at the sample's center of gravity, measuring and recording a respective second data series of temperature at the sample's periphery, measuring and recording a respective third data series of radial displacements at the sample's periphery, and calculating a change in pressure in the sample at a plurality of points in time based on first, second and third said data series.
摘要:
The invention relates to a thermal cycler (10) comprising a housing (12), the housing (12) accommodating a thermal block (14) having a plurality of sample wells (32), each for receiving a test sample in a sample vessel, electric heater means (18) for heating the thermal block (14), a power supply (24) and an electronic control (22) for controlling the electric heater means (18), and further comprising a temperature analysis and/or verification unit (28) for analyzing and/or verifying a thermal performance of the thermal block (14). The invention further relates to a method for analyzing or verifying a thermal performance of a thermal cycler (10) and for calibrating the thermal cycler (10). The thermal cycler (10) is characterized in that the temperature analysis and/or verification unit (28) is integrated into the housing (12) and is connected to the power supply (24) and to the electronic control (22) by means of an internal interface (26), whereas the method is characterized by the following steps: providing the thermal cycler (10) with an integrated temperature analysis and/or verification unit (28) and using the integrated temperature analysis and/or verification unit (28) for self-calibration of the thermal cycler (10).
摘要:
Provided is a sensing apparatus comprising a chip for integrated amplification and sequencing of a template polynucleotide in a sample. The apparatus comprises a chip with at least one ISFET in a well or chamber, amplification means for amplifying the template polynucleotide on a surface of said chip and comprising at least one heating means suitable for conducting amplification of the template polynucleotide at temperatures elevated with respect to room temperature, and sequencing means for sequencing the amplified template polynucleotide in said well or chamber. Methods of use are also provided.
摘要:
A field-deployable small format microfluidic system includes simplified, low-cost system control elements, optics, fluid control, and thermal control. An embodiment of a microfluidic chip includes a first plate having reagent wells and pneumatic ports formed therein, a second plate with reaction wells and microfluidic channels connecting each reaction well with one reagent well and one pneumatic port formed therein, and a printed circuit board with heater elements, a temperature sensor, and thermal vias providing thermal transfer through the PCB. In one embodiment, the reaction wells, pneumatic ports, reaction wells, and thermal vias are formed symmetrically with respect to a geometric center of the microfluidic chip to promote thermal uniformity across the reaction wells.
摘要:
A data receiver thread is continuously executed to receive in which signals indicating a fluid parameter. A predetermined time quantity of the signals is repeatedly buffered. Upon completion of the buffering of each predetermined time quantity of the signals, a data processing thread is initiated that executes on the just completed buffered predetermined time quantity of signals. Upon completion of each data processing thread, data from the just completed data processing thread is passed to a data plotting thread. Results of the data plotting thread are displayed on a portable electronic device while the data receiver thread is being executed.
摘要:
Fluid may be pumped within a microfluidic channel across a cell/particle sensor using a microscopic resistor. The microscopic resistor may be selectively actuated so as to heat the fluid within the microfluidic channel to a temperature below a nucleation energy of the fluid so as to regulate a temperature of the fluid for at least when the cell/particle sensor is sensing the fluid.
摘要:
Example implementations relate to a microfluidics sensing system. For example, a microfluidics sensing system may include a portable computing device to execute a microfluidics application, a microfluidic chip coupled to the portable computing device, the microfluidic chip including a microfluidic pumping and sensing region to perform a test on a biologic sample, and a printed circuit board (PCB) on a microfluidic reader to instruct the microfluidic pumping and sensing region to perform the test based on a command received from the microfluidics application.
摘要:
A tissue sample that has been removed from a subject can be properly fixed for evaluation using the disclosed transporter assembly for carrying a tissue sample and method for fixing an unfixed tissue sample. In one embodiment, the disclosed assembly includes a transport container, a fixative in the transport container, and a cooling device that reduces and/or maintains the temperature of the fixative to perform a pre-soaking process at a temperature of less than about 7° C. The pre-soaking process can, for example, be performed during sample transport or during extended periods of storage, such as over a weekend.
摘要:
Systems and methods for processing and analyzing samples are disclosed. The system may process samples, such as biological fluids, using assay cartridges which can be processed at different processing locations. In some cases, the system can be used for PCR processing. The different processing locations may include a preparation location where samples can be prepared and an analysis location where samples can be analyzed. To assist with the preparation of samples, the system may also include a number of processing stations which may include processing lanes. During the analysis of samples, in some cases, thermal cycler modules and an appropriate optical detection system can be used to detect the presence or absence of certain nucleic acid sequences in the samples. The system can be used to accurately and rapidly process samples.