Abstract:
This disclosure describes enzymes from the type II (a discrete set of enzymes) fatty acid synthesis ("FAS") pathway that can be used in combination with thiolases to operate a functional reversal of the β-oxidation cycle. A combination of thiolases with one or more of 3-oxoacyl-[acyl-carrier-protein] reductase (FabG, others), 3-hydroxyacyl-[acp] dehydratase (FabA, FabZ, others), and enoyl-[acyl-carrier-protein] reductase (FabI, FabK, FabL, FabV, others) yields a functional reversal of the β-oxidation cycle. If only one or two enzymes are used, the remaining enzymes will be traditional beta oxidation enzymes. Once this cycle is coupled with the appropriate priming and termination pathways, the production of carboxylic acids, alcohols, hydrocarbons, amines and their α-, β-, and ω-functionalized derivatives from renewable carbon sources can be achieved.
Abstract:
The present invention relates to catalytic conversion of ketoacids, including methods for increasing the molecular weight of ketoacids, the method comprising the steps of providing in a reactor a feedstock comprising at least one ketoacid. The feedstock is then subjected to one or more C-C-coupling reaction(s) in the presence of a catalyst system comprising a first metal oxide and a second metal oxide.
Abstract:
An enhanced natural gas processing method using Fischer-Tropsch (FT) process for the synthesis of sulfur free, clean burning, hydrocarbon fuels, examples of which include syndiesel and aviation fuel. A selection of natural gas, separately or combined with portions of natural gas liquids and FT naphtha and FT vapors are destroyed in a syngas generator and used or recycled as feedstock to an Fischer-Tropsch (FT) reactor in order to enhance the production of syndiesel from the reactor. The process enhancement results is the maximum production of formulated syndiesel without the presence or formation of low value by-products.
Abstract:
The invention relates to a process for the conversion of hydrogen and one or more oxides of carbon to hydrocarbons, which process comprises: contacting hydrogen and one or more oxides of carbon with a catalyst in a reaction zone; removing from the reaction zone an outlet stream comprising unreacted hydrogen, unreacted one or more oxides of carbon and one or more hydrocarbons and feeding the outlet stream to a separation zone in which the outlet stream is divided into at least three fractions, in which; a first fraction predominantly comprises unreacted hydrogen, unreacted one or more oxides of carbon and hydrocarbons having from 1 to 4 carbon atoms; a second fraction predominantly comprises hydrocarbons having 5 to 9 carbon atoms, at least a portion of which hydrocarbons having from 5 to 9 carbon atoms are olefinic; and a third fraction predominantly comprises hydrocarbons having 10 or more carbon atoms; characterised in that at least a portion of the second fraction is recycled to the reaction zone.
Abstract:
A fuel composition is provided that contains a major amount of a mixture of hydrocarbons in the gasoline boiling range and a minor amount of and (b) a minor amount of alpha-terpinene.
Abstract:
The present invention relates to a method for joint production of low octane gasoline and high octane gasoline. In the process of oil or light oil rectification, the extraction points of the distillates therein are finely divided, and the temperature ranges for extraction of fractions are narrowed down. Each of the low and high octane components having a high content in the range from C6-C12 (which may be extended to C5-C14 where necessary) is then separately extracted. After that, low octane components are combined into compression ignition low octane gasoline products, while high octane components are combined into high octane gasoline products. The remaining fractions are respectively added as supplementing agents into the low octane gasoline products or high octane gasoline products dependent on their octane ratings. Low octane gasoline is used in compression ignition gasoline engines, while high octane gasoline is used in spark ignition gasoline engines.
Abstract:
Methods for producing mid-grade and premium gasolines at a terminal from a seasonally adjusted high-octane blend stock are disclosed. Compositions useful as the high-octane blending stock also are disclosed.