Abstract:
The present invention relates to methods of synthesizing long-chain polyunsaturated fatty acids, especially eicosapentaenoic acid, docosapentaenoic acid and docosahexaenoic acid, in recombinant cells such as yeast or plant cells. Also provided are recombinant cells or plants which produce long-chain polyunsaturated fatty acids. Furthermore, the present invention relates to a group of new enzymes which possess desaturase or elongase activity that can be used in methods of synthesizing long-chain polyunsaturated fatty acids. In particular, the present invention provides ω3 destaurases, Δ5 elongases and Δ6 desaturases with novel activities. Also provided are methods and DNA constructs for transiently and/or stably transforming cells, particularly plant cells, with multiple genes.
Abstract:
This disclosure relates to the isolation and sequencing of nucleic acid molecules that encode cytochrome P450 polypeptides from a Papaver somniferum cultivar; uses in the production of noscapine and identification of poppy cultivars that include genes that comprise said nucleic acid molecules.
Abstract:
This disclosure describes enzymes from the type II (a discrete set of enzymes) fatty acid synthesis ("FAS") pathway that can be used in combination with thiolases to operate a functional reversal of the β-oxidation cycle. A combination of thiolases with one or more of 3-oxoacyl-[acyl-carrier-protein] reductase (FabG, others), 3-hydroxyacyl-[acp] dehydratase (FabA, FabZ, others), and enoyl-[acyl-carrier-protein] reductase (FabI, FabK, FabL, FabV, others) yields a functional reversal of the β-oxidation cycle. If only one or two enzymes are used, the remaining enzymes will be traditional beta oxidation enzymes. Once this cycle is coupled with the appropriate priming and termination pathways, the production of carboxylic acids, alcohols, hydrocarbons, amines and their α-, β-, and ω-functionalized derivatives from renewable carbon sources can be achieved.
Abstract:
This disclosure relates to the isolation and sequencing of nucleic acid molecules that encode cytochrome P450 polypeptides from a Papaver somniferum cultivar; uses in the production of noscapine and identification of poppy cultivars that include genes that comprise said nucleic acid molecules.
Abstract:
Provided are cytochrome P450 polypeptides, including cytochrome P450 santalene oxidase polypeptides, cytochrome P450 bergamotene oxidase polypeptides and cytochrome P450 reductase polypeptides. Also provided are nucleic acid molecules encoding the cytochrome P450 polypeptides. Cells containing the nucleic acids and/or the polypeptides are provided as are methods for producing terpenes, such as santalols and bergamotols, by culturing the cells.
Abstract:
The present invention relates to methods of synthesizing long-chain polyunsaturated fatty acids, especially eicosapentaenoic acid, docosapentaenoic acid and docosahexaenoic acid, in recombinant cells such as yeast or plant cells. Also provided are recombinant cells or plants which produce long-chain polyunsaturated fatty acids. Furthermore, the present invention relates to a group of new enzymes which possess desaturase or elongase activity that can be used in methods of synthesizing long-chain polyunsaturated fatty acids. In particular, the present invention provides É3 destaurases, ”5 elongases and ”6 desaturases with novel activities. Also provided are methods and DNA constructs for transiently and/or stably transforming cells, particularly plant cells, with multiple genes.
Abstract:
A modified luciferase protein which is a sensor for molecules including cAMP is provided. The modified luciferase protein includes one or more heterologous amino acid sequences, at least one of which directly or indirectly interacts with cAMP.
Abstract:
This disclosure relates to the isolation and sequencing of nucleic acid molecules that encode cytochrome P450 polypeptides from a Papaver somniferum cultivar; uses in the production of noscapine and identification of poppy cultivars that include genes that comprise said nucleic acid molecules.
Abstract:
This disclosure describes enzymes from the type II (a discrete set of enzymes) fatty acid synthesis (“FAS”) pathway that can be used in combination with thiolases to operate a functional reversal of the β-oxidation cycle. A combination of thiolases with one or more of 3-oxoacyl-[acyl-carrier-protein] reductase (FabG, others), 3-hydroxyacyl-[acp] dehydratase (FabA, FabZ, others), and enoyl-[acyl-carrier-protein] reductase (FabI, FabK, FabL, FabV, others) yields a functional reversal of the β-oxidation cycle. If only one or two enzymes are used, the remaining enzymes will be traditional beta oxidation enzymes. Once this cycle is coupled with the appropriate priming and termination pathways, the production of carboxylic acids, alcohols, hydrocarbons, amines and their α-, β-, and ω-functionalized derivatives from renewable carbon sources can be achieved.