摘要:
An inspection apparatus by an electron beam comprises: an electron-optical device 70 having an electron-optical system for irradiating the object with a primary electron beam from an electron beam source, and a detector for detecting the secondary electron image projected by the electron-optical system; a stage system 50 for holding and moving the object relative to the electron-optical system; a mini-environment chamber 20 for supplying a clean gas to the object to prevent dust from contacting to the object; a working chamber 31 for accommodating the stage device, the working chamber being controllable so as to have a vacuum atmosphere; at least two loading chambers 41,42 disposed between the mini-environment chamber and the working chamber, adapted to be independently controllable so as to have a vacuum atmosphere; and a loader 60 for transferring the object to the stage system through the loading chambers.
摘要:
A substrate inspection apparatus 1-1 (Fig. 1) of the present invention performs the following steps of: carrying a substrate "S" to be inspected into an inspection chamber 23-1; maintaining a vacuum in said inspection chamber; isolating said inspection chamber from a vibration; moving successively said substrate by means of a stage 26-1 with at least one degree of freedom; irradiating an electron beam having a specified width; helping said electron beam reach to a surface of said substrate via a primary electron optical system 10-1; trapping secondary electrons emitted from said substrate via a secondary electron optical system 20-1 and guiding it to a detecting system 35-1; forming a secondary electron image in an image processing system based on a detection signal of a secondary electron beam obtained by said detecting system; detecting a defective location in said substrate based on the secondary electron image formed by said image processing system; indicating and/or storing said defective location in said substrate by CPU 37-1; and taking said completely inspected substrate out of the inspection chamber. Thereby, the defect inspection on the substrate can be performed successively with high level of accuracy and efficiency as well as with higher throughput.
摘要:
An electron beam apparatus such as a sheet beam based testing apparatus has an electron-optical system for irradiating an object under testing with a primary electron beam from an electron beam source, and projecting an image of a secondary electron beam emitted by the irradiation of the primary electron beam, and a detector for detecting the secondary electron beam image projected by the electron-optical system. Specifically, the electron beam apparatus comprises beam generating means 2004 for irradiating an electron beam having a particular width, a primary electron-optical system 2001 for leading the beam to reach the surface of a substrate 2006 under testing, a secondary electron-optical system 2002 for trapping secondary electrons generated from the substrate 2006 and introducing them into an image processing system 2015, a stage 2003 for transportably holding the substrate 2006 with a continuous degree of freedom equal to at least one, a testing chamber for the substrate 2006, a substrate transport mechanism for transporting the substrate 2006 into and out of the testing chamber, an image processing analyzer 2015 for detecting defects on the substrate 2006, a vibration isolating mechanism for the testing chamber, a vacuum system for holding the testing chamber at a vacuum, and a control system 2017 for displaying or storing positions of defects on the substrate 2006.
摘要:
An inspection apparatus and a semiconductor device manufacturing method using the same. The inspection apparatus is used for defect inspection, line width measurement, surface potential measurement or the like of a sample such as a wafer. In the inspection apparatus, a plurality of charged particles is delivered from a primary optical system to the sample, and secondary charged particles emitted from the sample are separated from the primary optical system and introduced through a secondary optical system to a detector. Irradiation of the charged particles is conducted while moving the sample. Irradiation spots of the charged particles are arranged by N rows along a moving direction of the sample and by M columns along a direction perpendicular thereto. Every row of the irradiation spots of the charged particles is shifted successively by a predetermined amount in a direction perpendicular to the moving direction of the sample.
摘要:
The present invention provides an electron beam apparatus for irradiating a sample with primary electron beams to detect secondary electron beams generated from a surface of the sample by the irradiation for evaluating the sample surface. In the electron beam apparatus, an electron gun has a cathode for emitting primary electron beams. The cathode includes a plurality of emitters for emitting primary electron beams, arranged apart from one another on a circle centered at an optical axis of a primary electro-optical system. The plurality of emitters are arranged such that when the plurality of emitters are projected onto a straight line parallel with a direction in which the primary electron beams are scanned, resulting points on the straight line are spaced at equal intervals.
摘要:
The present invention relates to a substrate inspection apparatus for inspecting a pattern formed on a substrate by irradiating a charged particle beam onto the substrate. The substrate inspection apparatus comprises: an electron beam apparatus including a charged particle beam source for emitting a charged particle beam, a primary optical system for irradiating the charged particle beam onto the substrate, a secondary optical system into which a secondary charged particle beam is introduced, the secondary charged particle beam being emitted from the substrate by an irradiation of the charged particle beam, a detection system for detecting the secondary charged particle beam introduced into said secondary optical system and outputting as an electric signal, and a process control system for processing and evaluating the electric signal; a stage unit for holding the substrate and moving the substrate relatively to said electron beam apparatus; a working chamber capable of shielding at least an upper region of the stage unit form outside to control under desired atmosphere; and a substrate load-unload mechanism for transferring the substrate into or out of the stage.
摘要:
The purpose of the invention is to provide an improved electron beam apparatus with improvements in throughput, accuracy, etc.. One of the characterizing features of the electron beam apparatus of the present invention is that it has a plurality of optical systems, each of which comprises a primary electron optical system for scanning and irradiating a sample with a plurality of primary electron beams; a detector device for detecting a plurality of secondary beams emitted by irradiating the sample with the primary electron beams; and a secondary electron optical system for guiding the secondary electron beams from the sample to the detector device; all configured so that the plurality of optical systems scan different regions of the sample with their primary electron beams, and detect the respective secondary electron beams emitted from each of the respective regions. This is what makes higher throughput possible. To provide high accuracy, the apparatus is configured such that the axes of its optical systems can be aligned, and aberrations corrected, by a variety of methods.
摘要:
The present invention provides an electron beam apparatus for evaluating a sample surface, which has a primary electro-optical system for irradiating a sample with a primary electron beam, a detecting system, and a secondary electro-optical system for directing secondary electron beams emitted from the sample surface by the irradiation of the primary electron beam to the detecting system. The electron beam apparatus comprises a multi-beam generator included in the primary electro-optical system for generating electrons emitted from an electron gun as a plurality of primary electron beams, a scanning deflector included in the primary electro-optical system for simultaneously scanning the plurality of primary electron beams on the sample, an objective lens included commonly in the primary electro-optical system and the secondary electro-optical system for decelerating the plurality of primary electron beams for irradiation to the sample, and for accelerating a plurality of secondary electron beams emitted from points of the sample irradiated with the primary electron beams, a secondary electron beam separator included in the primary electro-optical system and the secondary electro-optical system for deflecting the plurality of secondary electron beams passing through the objective lens from the primary electro-optical system to the secondary electro-optical system, at least one stage of magnification lens included in the secondary electro-optical system for enlarging the plurality of deflected secondary electron beams, and a plurality of detectors included in the detecting system and provided corresponding to the plurality of secondary electron beams from the secondary electro-optical system for detecting the secondary electron beams.