摘要:
Provided herein is a droplet actuator including (a) first and second substrates separated by a droplet-operations gap, the first and second substrates including respective hydrophobic surfaces that face the droplet-operations gap; (b) a plurality of electrodes coupled to at least one of the first substrate and the second substrate, the electrodes arranged along the droplet-operations gap to control movement of a droplet along the hydrophobic surfaces within the droplet-operations gap; and (c) a hydrophilic or variegated-hydrophilic surface exposed to the droplet-operations gap, the hydrophilic or variegated-hydrophilic surface being positioned to contact the droplet when the droplet is at a select position within the droplet-operations gap.
摘要:
Described are microfluidic devices and methods for providing a predetermined number of microspheres or beads, together with a cell, within a fluid droplet being processed. The system may provide each droplet with a single bead and a single cell, and the bead may contain DNA or other reagents for later identifying the specific cell associated with that bead.
摘要:
Presented herein are methods and compositions for multiplexed single cell gene expression analysis. Some methods and compositions include the use of droplets and/or beads bearing unique barcodes such as unique molecular barcodes (UMI).
摘要:
Presented herein are methods and compositions for multiplexed single cell gene expression analysis. Some methods and compositions include the use of droplets and/or beads bearing unique barcodes such as unique molecular barcodes (UMI).
摘要:
Provided are methods and apparatuses for performing sequencing using droplet manipulation, for example, via electrowetting-based techniques. Also provided are integrated methods and apparatuses for performing sample preparation and sequencing on the same apparatus. In addition, provided are methods of reducing reagent waste and preloaded consumable cartridges comprising reagents for sample preparation and/or sequencing.
摘要:
Presented herein are methods and compositions for multiplexed single cell gene expression analysis. Some methods and compositions include the use of droplets and/or beads bearing unique barcodes such as unique molecular barcodes (UMI).
摘要:
In accordance with embodiments herein a method for capturing cells of interest in a digital microfluidic system is provided, comprising utilizing a droplet actuator to transport a sample droplet to a microwell device. The microwell device includes a substrate having a plurality of microwells that open onto a droplet operations surface of the microwell device. The sample droplet includes cells of interest that enter the microwells. The method introduces capture beads to the microwells, and the capture elements are immobilized on the capture beads. The method utilizes the droplet actuator to transport a cell lysis reagent droplet to the microwell device. Portions of the cell lysis reagent droplet enter the microwells and, during an incubation period, cause the cells of interest to release analyte that is captured by the capture elements on the capture beads.
摘要:
In accordance with embodiments herein a method for capturing cells of interest in a digital microfluidic system is provided, comprising utilizing a droplet actuator to transport a sample droplet to a microwell device. The microwell device includes a substrate having a plurality of microwells that open onto a droplet operations surface of the microwell device. The sample droplet includes cells of interest that enter the microwells. The method introduces capture beads to the microwells, and the capture elements are immobilized on the capture beads. The method utilizes the droplet actuator to transport a cell lysis reagent droplet to the microwell device. Portions of the cell lysis reagent droplet enter the microwells and, during an incubation period, cause the cells of interest to release analyte that is captured by the capture elements on the capture beads.
摘要:
Provided herein is a droplet actuator including (a) first and second substrates separated by a droplet-operations gap, the first and second substrates including respective hydrophobic surfaces that face the droplet-operations gap; (b) a plurality of electrodes coupled to at least one of the first substrate and the second substrate, the electrodes arranged along the droplet-operations gap to control movement of a droplet along the hydrophobic surfaces within the droplet-operations gap; and (c) a hydrophilic or variegated-hydrophilic surface exposed to the droplet-operations gap, the hydrophilic or variegated-hydrophilic surface being positioned to contact the droplet when the droplet is at a select position within the droplet-operations gap.