摘要:
The present disclosure relates to compositions and methods useful for the production of heterologous proteins with increased N-glycosylation site occupancy in filamentous fungal cells, such as Trichoderma cells. More specifically, the invention provides a filamentous fungal cell comprising i. one or more mutation that reduces or eliminates one or more endogenous protease activity compared to a parental filamentous fungal cell which does not have said mutation(s), ii. a polynucleotide encoding a heterologous catalytic subunit of oligosaccharyl transferase, and iii. a polynucleotide encoding a heterologous glycoprotein, wherein said catalytic subunit of oligosaccharyl transferase is selected from Leishmania oligosaccharyl transferase catalytic subunits.
摘要:
Described herein are compositions including filamentous fungal cells, such as Trichoderma fungal cells, having reduced protease activity and expressing fucosylation pathway. Further described herein are methods for producing a glycoprotein having fucosylated N-glycan, using genetically modified filamentous fungal cells, for example, Trichoderma fungal cells, as the expression system.
摘要:
Described herein are compositions including filamentous fungal cells, such as Trichoderma fungal cells, having reduced protease activity and expressing fucosylation pathway. Further described herein are methods for producing a glycoprotein having fucosylated N-glycan, using genetically modified filamentous fungal cells, for example, Trichoderma fungal cells, as the expression system.
摘要:
The present disclosure relates to compositions and methods useful for the production of recombinant glycoproteins in filamentous fungal cells, such as Trichoderma cells, wherein at least 90% (mol %), preferably at least 95% of the total neutral N-glycans of said produced recombinant glycoprotein are mammalian-like N-glycans. More specifically, the invention provides a filamentous fungal cell comprising i. one or more mutations that reduces or eliminates one or more endogenous protease activity compared to a parental filamentous fungal cell which does not have said mutation(s); ii.a polynucleotide encoding a heterologous catalytic subunit of oligosaccharyl transferase; iii. a recombinant polynucleotide for increasing α1, 2 mannosidase activity;and, iv. a recombinant polynucleotide encoding said heterologous glycoprotein.