摘要:
Surgical repair of diseased or damaged endogenous connective tissue can be accomplished using a tissue graft formed from a delaminated segment of intestinal tissue. The tissue graft comprises the intestinal tunica submucosa, muscularis mucosa and stratum compactum delaminated from the tunica muscularis and the luminal portion of the tunica mucosa. The graft can be conditioned by stretching and formed as a multilayer composition for high tensile strength and resistance to tearing at its points of attachment to existing physiological structures.
摘要:
A unitary heterolaminar tissue graft construct is prepared by fusing partially overlapped strips or sheets of submucosa tissue. The submucosa components are fused by compressing at least the overlapped positions of said strips between two surfaces under conditions that allow or promote dehydration of the compressed submucosa sheets. Three dimensional graft constructs can be prepared by using complementary non-planar compressive surfaces.
摘要:
A fluidized, injectable tissue graft composition is described. The composition comprises comminuted intestinal submucosa or protease-digested intestinal submucosa. Methods for the preparation and use of injectable tissue graft compositions are described. In preferred embodiments the tissue graft material is prepared from the intestinal submucosa comprising the tunica submucosa, the muscularis mucosa and the stratum compactum of a segment of intestinal tissue of a warm-blooded vertebrate. Effective amounts of the fluidized graft compositions can be injected to promote repair tissue defects by inducing formation of endogenous tissues.
摘要:
An improved tissue graft construct comprising submucosa of a warm-blooded vertebrate and a preselected group of eukaryotic cells are described. The improved tissue graft constructs can be used in accordance with the present invention to enhance the repair of damaged or diseased tissues in vivo.
摘要:
A cell culture growth substrate comprising submucosal tissue of a warm-blooded vertebrate and a method for culturing eukaryotic cells are described. Submucosal tissue used in accordance with the present invention supports the proliferation and differentiation of eukaryotic cells when said cells are contacted with submucosal tissue under conditions conducive to cell proliferation.
摘要:
A perforated unitary multi-laminar tissue graft construct and method for preparing such construct are described. The method comprises overlapping strips of submucosal tissue with other strips of submucosal tissue, compressing at least the overlapped portions of said strips between two surfaces under conditions that allow or promote dehydration of the compressed submucosal sheets, and perforating the resulting unitary tissue graft construct. The perforated tissue graft compositions have enhanced mechanical and remodeling properties relative to non-perforated submucosal tissue grafts.
摘要:
A tissue graft composition comprising bladder submucosal tissue delaminated from abluminal muscle layers and at least the luminal portion of the tunica mucosa of a segment of vertebrate urinary bladder is described. The graft composition can be implanted to replace or support damaged or diseased tissues.
摘要:
A method for repairing damaged or diseased bone is described. The method comprises the step of implanting into the damaged or diseased region a bone graft composition in powder form, the composition comprising the tunica submucosa delaminated from the tunica muscularis and at least the luminal portion of the tunica mucosa of a segment of vertebrate intestine.
摘要:
The present invention relates to tissue graft constructs useful in promoting regrowth and healing of damaged or diseased nuerological related tissue structures. More particularly this invention is directed to a submucosa tissue graft construct and a method of inducing the formation of endogenous neurological structures at a site in need of endogenous neurological related tissue growth.
摘要:
A method for surgical repair of a diseased or damaged bladder is described. Diseased or damaged bladder tissue is surgically replaced with submucosal tissue of a warm blooded vertebrate to promote regrowth of endogenous urinary bladder tissue.