Abstract:
The electrical substrate material preferably comprises polytetrafluoroethylene filled with silica along with a small amount of microfiberglass. In an important feature of this invention, the ceramic filler (silica) is coated with a silane coating material.
Abstract:
In accordance with the present invention, a circuit assembly is manufactured in an additive process using at least one layer of a fluoropolymer composite material and a conductive material. The conductive layers are plated, and the fluoropolymer composite layers are laminated. The use of the filled fluoropolymeric composite eliminates the need for a barrier metal layer between the insulation and the conductors. A plurality of these circuit assemblies are stacked, one on top of the other. At least, selected exposed locations of the conductive material comprise a diffusible conductive material (e.g., gold). Once stacked the circuit assemblies are subjected to lamination under heat and pressure to simultaneously fuse adjacent fluoropolymer composite material and diffuse adjacent diffusible conductive material together to form an integral multilayer circuit having solid conductive interconnects.
Abstract:
The electrical substrate material preferably comprises polytetrafluoroethylene filled with silica along with a small amount of microfiberglass. In an important feature of this invention, the ceramic filler (silica) is coated with a silane coating material.
Abstract:
A composite material is presented comprised of a ceramic filled fluoropolymer wherein the ceramic is coated with a zirconate coupling agent and/or a titanate coupling agent.
Abstract:
A composite material is presented comprised of a ceramic filled fluoropolymer wherein the ceramic is coated with a zirconate coupling agent and/or a titanate coupling agent.
Abstract:
A composite material is disclosed. The material comprises a polymeric matrix and from about 20 volume percent to about 70 volume percent inorganic particles distributed throughout the matrix. Suitable inorganic particles include hollow inorganic microspheres and porous inorganic particles. The inorganic particles are coated with a surface coating. The composite material of the present invention exhibits a dielectric constant of less than about 2.5 and a thermal coefficient of expansion of less than about 70 ppm/°C.