摘要:
A molecular sieve catalyst and a preparation method thereof to produce light olefins from catalytically cracking naphtha in severe environments of high temperature and high moisture, are disclosed. In detail, the catalyst is prepared by spray-drying and calcining the mixed slurry, in which 0.01~5.0 wt% of MnO 2 and 1~15 wt% of P 2 O 5 are simultaneously embedded in catalyst which consists of zeolite, clay and inorganic complex. According to the present invention, the method that manganese and phosphate are embedded simultaneously in zeolite and inorganic complex is used to increase thermal-stability of obtained spherical catalyst, and increase olefin yield of cracking hydrocarbon such as naphtha by protecting acid-site of zeolite. To synthesize the required catalyst, the important procedures are mixing ratio and mixing sequence of Mn, P, zeolite, and inorganic complex.
摘要翻译:分子筛催化剂及其制备方法,以从在高温和高湿度的恶劣环境催化裂解石脑油产生轻质烯烃,是游离缺失盘。 详细地,该催化剂是通过喷雾干燥制备,并且煅烧该混合浆料,二氧化锰,其中12:01〜5.0重量%和P:1〜15重量%的2 O 5同时嵌入到催化剂,其besteht沸石,粘土和 无机复合。 。根据本发明,该方法确实锰和磷酸盐在沸石同时嵌入和无机复合用于增加得到的球形催化剂的热稳定性,并提高裂化烃的烯烃产率:如通过保护沸石的酸性部位石脑油。 为了合成所要求的催化剂,重要的程序混合比和Mn,P,沸石的混合序列,和无机复合。
摘要:
Disclosed herein is a method of regenerating a titanium-containing molecular sieve catalyst. Particularly, this invention provides a method of regenerating a titanium-containing molecular sieve catalyst used in epoxidation of olefin through simple treatment using a mixture solvent comprising aqueous hydrogen peroxide and alcohol. According to the method of this invention, when the catalyst having decreased activity is regenerated, the activity of the regenerated catalyst is equal to that of new catalyst and can be maintained stable for a long period of time.
摘要:
Disclosed herein is a catalyst for producing biodiesel, including a carrier having water resistance and an active component supported on the carrier and used in a hydrotreating reaction or a decarboxylation reaction. Since the catalyst for producing biodiesel includes a carrier having strong water resistance, the deactivation of the catalyst due to the water produced through a process of producing HBD can be prevented, thus remarkably improving the long term stability of a catalyst.
摘要:
The present invention provides a method of producing a mixed manganese ferrite catalyst, and a method of preparing 1,3 -butadiene using the mixed manganese ferrite catalyst. Specifically, the present invention provides a method of producing a mixed manganese ferrite catalyst through a coprecipitation method which is performed at a temperature of 10 ~ 40 °C, and to a method of preparing 1,3 -butadiene using the mixed manganese ferrite catalyst through an oxidative dehydrogenation reaction, in which a C4 mixture containing n-butene, n-butane and other impurities is directly used as reactants without performing additional n-butane separation process or n-butene extraction. The present invention is advantageous in that 1,3-butadiene can be prepared directly using a C4 mixture including n-butane at a high concentration as a reactant through an oxidative hydrogenation reaction without performing an additional n-butane separation process, and 1,3-butadiene, having high activity, can be also obtained in high yield for a long period of time.
摘要:
Disclosed herein is a process for increasing the production of benzene from a hydrocarbon mixture. A process for producing an aromatic hydrocarbon mixture and LPG from a hydrocarbon mixture, and a solvent extraction process for separating and recovering polar hydrocarbons from a hydrocarbon mixture containing polar hydrocarbons (that is, aromatic hydrocarbons) and nonpolar hydrocarbons (that is, non-aromatic hydrocarbons) are integrated, thereby it is possible to increase the production of benzene.
摘要:
The present invention relates to a method of producing 1,3-butadiene by the oxidative dehydrogenation of n-butene using a continuous-flow dual-bed reactor designed such that two kinds of catalysts charged in a fixed-bed reactor are not physically mixed. More particularly, the present invention relates to a method of producing 1,3-butadiene by the oxidative dehydrogenation of n-butene using a C4 mixture including n-butene and n-butane as reactants and using a continuous-flow dual-bed reactor in which a multi-component bismuth molybdate catalyst and a zinc ferrite catalyst having different reaction activity in the oxidative dehydrogenation reaction of n-butene isomers (1-butene, trans-2-butene, cis-2-butene).
摘要:
This invention relates to a method of preparing multicomponent bismuth molybdate catalysts composed of four metal components and a method of preparing 1,3 -butadiene using the catalyst, and particularly, to multicomponent bismuth molybdate catalysts composed of a divalent cationic metal, a trivalent cationic metal, bismuth and molybdenum, a preparation method thereof, and a method of preparing 1,3-butadiene from a C4 mixture including n-butene and n-butane using oxidative dehydrogenation. According to this invention, it is possible to prepare catalysts having high activity for the preparation process of 1,3-butadiene only using four metal components as shown through systematic investigation of types and ratios of metal components, unlike conventional multicomponent metal oxide catalysts having a complicated composition of metal components.
摘要:
Disclosed is a process of preparing aromatic hydrocarbons and liquefied petroleum gas (LPG) from a hydrocarbon mixture, in which a non-aromatic compound in the hydrocarbon feedstock mixture is converted into a gaseous material having a large amount of LPG through hydrocracking, and an aromatic compound therein is converted into an oil component having large amounts of benzene, toluene, and xylene (BTX) through dealkylation and transalkylation, in the presence of a catalyst obtained by supporting platinum/bismuth onto a mixture support having zeolite and an inorganic binder. The gaseous product is separated into LPG and a mixture of methane and ethane depending on differences in boiling point through distillation, while the liquid product is separated into benzene, toluene, xylene, and C9+ aromatic compounds depending on differences in boiling point through distillation.
摘要:
Disclosed herein is a method of simultaneously removing sulfur and mercury from a hydrocarbon material, including: hydrotreating the hydrocarbon material containing sulfur and mercury in the presence of a catalyst including a metal supported with a carrier to convert sulfur into hydrogen sulfide, and adsorb mercury on a metal active site or a carrier of the catalyst in the form of mercury sulfide.
摘要:
Disclosed is a method of recovering 1,3 -butadiene from a C4 stream containing butane, isobutane, 2-butene, 1-butene, isobutene, butadiene and acetylene. The process of recovering highly pure 1,3 -butadiene includes acetylene conversion for selectively converting acetylene through liquid-phase hydrogenation, so that the acetylene content is decreased to 70 wt ppm or less, and 1,3 -butadiene extraction using an extractive distillation column, a pre-separator, a solvent stripping column, a solvent recovery column, and a purification column. Through the acetylene conversion, the concentration of vinylacetylene is decreased to 70 wt ppm or less, after which 1,3-butadiene is recovered using only one extractive distillation column, thereby considerably decreasing the degree of utility and the loss of streams in the course of extraction. The number of units necessary for the process is decreased, thus remarkably reducing the time during which impurities can accumulate in a processing unit.