摘要:
The invention concerns a plasma generating apparatus, for manufacturing devices having patterned layers, comprising a first electrode assembly (1) and a second electrode assembly (2) placed in a plasma reactor chamber, an electrical power supply (6) for generating a voltage difference between the first electrode assembly (1) and the second electrode assembly (2). According to the invention, the second electrode assembly (2) is configured for receiving a substrate (5), and the first electrode assembly (1) comprises a plurality of protrusions (11) and a plurality of recesses (12, 13, 14, 15, 16, 17, 18), the protrusions (11) and recesses (12, 13, 14, 15, 16, 17, 18) being dimensioned and set at respective distances (D1, D2) from the surface (51) of the substrate (5) so as to generate a plurality of spatially isolated plasma zones (21, 22) located selectively either between said surface (51) of the substrate (5) and said plurality of recesses (12, 13, 14, 15, 16, 17, 18) or between said surface (51) of the substrate (5) and said plurality of protrusions (11).
摘要:
An apparatus for patterned processing comprises a source of input gas (2), a source of energy suitable for generating a plasma from the input gas (2) in a plasma region and a grounded sample holder (12) configured for receiving a solid sample (5). According to the invention, the apparatus comprises a mask (4) arranged between the plasma region and the grounded sample holder (12), the mask (4) having a first face (45) oriented toward the plasma region and a second face (46) oriented toward a surface (51) of the solid sample (5) to be processed, the mask (4) comprising a mask opening (40) extending from the first face to the second face, and an electrical power supply (16) adapted for applying a direct-current bias voltage to the mask, and the mask opening (40) being dimensioned and shaped so as to generate spatially selective patterned processing on the surface (51) of the solid sample (5).
摘要:
The invention concerns a plasma generating apparatus, for manufacturing devices having patterned layers, comprising a first electrode assembly (1) and a second electrode assembly (2) placed in a plasma reactor chamber, an electrical power supply (6) for generating a voltage difference between the first electrode assembly (1) and the second electrode assembly (2). According to the invention, the second electrode assembly (2) is configured for receiving a substrate (5), and the first electrode assembly (1) comprises a plurality of protrusions (11) and a plurality of recesses (12, 13, 14, 15, 16, 17, 18), the protrusions (11) and recesses (12, 13, 14, 15, 16, 17, 18) being dimensioned and set at respective distances (D1, D2) from the surface (51) of the substrate (5) so as to generate a plurality of spatially isolated plasma zones (21, 22) located selectively either between said surface (51) of the substrate (5) and said plurality of recesses (12, 13, 14, 15, 16, 17, 18) or between said surface (51) of the substrate (5) and said plurality of protrusions (11).
摘要:
An apparatus is described for depositing a film on a substrate from a plasma. The apparatus comprises an enclosure, a plurality of plasma generator elements disposed within the enclosure, and means, also within the enclosure, for supporting the substrate. Each plasma generator element comprises a microwave antenna having an end from which microwaves are emitted, a magnet disposed in the region of the said antenna end and defining therewith an electron cyclotron resonance region in which a plasma can be generated, and a gas entry element having an outlet for a film precursor gas or a plasma gas. The outlet is arranged to direct gas towards a film deposition area situated beyond the magnet, as considered from the microwave antenna, the outlet being located in, or above, the hot electron confinement envelope.
摘要:
A method is described of forming a film of an amorphous material on a substrate by deposition from a plasma. The substrate is placed in an enclosure, a film precursor gas is introduced into the enclosure, and unreacted and dissociated gas is extracted from the enclosure so as to provide a low pressure therein. Microwave energy is introduced into the gas within the enclosure to produce a plasma therein by distributed electron cyclotron resonance (DECR) and cause material to be deposited from the plasma on the substrate. The said flow rate of the film precursor gas is altered during the course of deposition of material, so as to cause the bandgap to vary over the thickness of the deposited material.
摘要:
The invention relates to a process for texturing the surface of a silicon substrate, comprising a step of exposing said surface to an MDECR plasma generated, at least from argon, using between 1.5 W/cm 2 and 6.5 W/cm 2 of plasma power in a matrix distributed electron cyclotron resonance plasma source, the substrate bias being between 100 V and 300 V.
摘要:
An apparatus is described for depositing a film on a substrate from a plasma. The apparatus comprises an enclosure, a plurality of plasma generator elements disposed within the enclosure, and means, also within the enclosure, for supporting the substrate. Each plasma generator element comprises a microwave antenna having an end from which microwaves are emitted, a magnet disposed in the region of the said antenna end and defining therewith an electron cyclotron resonance region in which a plasma can be generated, and a gas entry element having an outlet for a film precursor gas or a plasma gas. The outlet is arranged to direct gas towards a film deposition area situated beyond the magnet, as considered from the microwave antenna, the outlet being located in, or above, the hot electron confinement envelope.
摘要:
A plasma excitation device is described for use in depositing a film on a substrate from a plasma formed by distributed electron cyclotron resonance. The device comprises a microwave antenna having an end from which microwaves are emitted, a magnet disposed in the region of the said antenna end and defining therewith an electron cyclotron resonance region in which a plasma can be generated, and a gas entry element having an outlet for a film precursor gas or a plasma gas. The outlet is arranged to direct gas towards a film deposition area situated beyond the magnet, as considered from the microwave antenna.