摘要:
A material for audio equipment housing containing a polylactic acid resin composition containing a polylactic acid resin, a plasticizer, an organic crystal nucleating agent, and an inorganic material, wherein the content of the plasticizer is from 1 to 50 parts by mass based on 100 parts by mass of the polylactic acid resin; and a vibration-damping material containing a polylactic acid resin composition containing a polylactic acid resin, a plasticizer, an organic crystal nucleating agent, and an inorganic material, wherein the content of the plasticizer is from 1 to 50 parts by mass based on 100 parts by mass of the polylactic acid resin. The material of the present invention can be suitably used as materials for audio equipment of, for example, speakers, television, radio cassette players, headphones, audio components, or microphones, and manufactured articles, such as electric appliances, transportation vehicles, construction buildings, and industrial equipment, or parts or housing thereof.
摘要:
[Objective] To provide a polyamide resin composition having superior productivity and mechanical strength. [Constitution] A polyamide resin composition includes: (A) Polyamide 66; (B) glass fibers; and (C) a copper compound and a halide. The percentage of a component of the (A) Polyamide 66 having a molecular weight of 30,000 or less as obtained by Gel Permeation Chromatography (GPC) is within a range from 30% by mass to 37% by mass of the total amount of the (A) Polyamide 66, and the percentage of the (A) Polyamide 66 having a molecular weight of 100,000 or greater is within a range from 8% by mass to 15% by mass of the total amount of the (A) Polyamide 66.
摘要:
The present invention addresses the problem of providing a polyester resin composition for reflective materials which gives a reflective material having a high reflectance. The polyester resin composition for reflective materials comprises: a polyester resin (A) comprising an alicyclic dicarboxylic acid ingredient unit (a1) and an aliphatic diol ingredient unit (b1); and a white pigment (B). The amount of the alicyclic dicarboxylic acid ingredient unit (a1) is 50 mol% or more of the amount of all the dicarboxylic acid ingredient units (a) in the polyester resin (A), and the amount of the aliphatic diol ingredient unit (b1) is 50 mol% or more of the amount of all the diol ingredient units (b) in the polyester resin (A). The alicyclic dicarboxylic acid ingredient unit (a1) comprises the cis and trans forms of cis-trans isomers, the proportion of the cis form determined by NMR being 20 mol% or higher.
摘要:
Es wird eine Zusammensetzung beschrieben, die ein Bindemittel auf Basis einer wässrigen oder Lösungsmittel-basierten Polymerdispersion, Brandschutzadditive, welche ein physikalisch wirkendes Treibmittel, eine Phosphor-haltige Verbindung, ausgewählt unter Salzen oder Estern der Oxosäuren des Phosphors, und Glasfasern umfassen, und einen säurebeständigen anorganischen Füllstoff umfasst, sowie deren Verwendung als Dichtmasse, insbesondere als Brandschutzdichtmasse.
摘要:
Provided is a resin composition capable of achieving a higher plating property. The resin composition comprises relative to 100 parts by weight of a resin component comprising 30 to 100% by weight of a polycarbonate resin and 70% by weight or less of a styrene-based resin, 10 to 100 parts by weight of a glass filler and 2 to 20 parts by weight of a laser direct structuring additive, wherein the laser direct structuring additive comprises a metal oxide, a component of the largest blending amount among the metal components is tin, a component of the second largest blending amount is antimony, and in addition lead and/or copper are contained.
摘要:
Provided is a phenolic resin molding compound including (A) a novolac-type phenolic resin including an alkylbenzene-modified novolac-type phenolic resin, (B) a resol-type phenolic resin, (C) hexamethylenetetramine, (D) graphite, and (E) fiber-shaped filler, wherein in regard to the content of each component on the basis of the entirety of the molding compound, a total content of the components (A) to (C) is 30 to 40 % by weight, a content of the component (D) is 30 to 50 % by weight, and a content of the component (E) is 5 to 20 % by weight.