Abstract:
Apparatus and methods are disclosed for nullifying memory store instructions and one or more registers identified in a target field of a nullification instruction. In some examples of the disclosed technology, an apparatus can include memory and one or more block-based processor cores configured to fetch and execute a plurality of instruction blocks. One of the cores can include a control unit configured, based at least in part on receiving a nullification instruction, to obtain an instruction identification for a memory access instruction of a plurality of memory access instructions and a register identification of at least one of a plurality of registers, based on a first and second target fields of the nullification instruction. The at least one register and the memory access instruction associated with the instruction identification are nullified. Based on the nullified memory access instruction, a subsequent memory access instruction is executed.
Abstract:
Apparatus and methods are disclosed for nullifying memory store instructions and one or more registers identified in a target field of a nullification instruction. In some examples of the disclosed technology, an apparatus can include memory and one or more block-based processor cores configured to fetch and execute a plurality of instruction blocks. One of the cores can include a control unit configured, based at least in part on receiving a nullification instruction, to obtain an instruction identification for a memory access instruction of a plurality of memory access instructions and a register identification of at least one of a plurality of registers, based on a first and second target fields of the nullification instruction. The at least one register and the memory access instruction associated with the instruction identification are nullified. Based on the nullified memory access instruction, a subsequent memory access instruction is executed.
Abstract:
Apparatus and methods are disclosed for nullifying memory store instructions and one or more registers identified in a target field of a nullification instruction. In some examples of the disclosed technology, an apparatus can include memory and one or more block-based processor cores configured to fetch and execute a plurality of instruction blocks. One of the cores can include a control unit configured, based at least in part on receiving a nullification instruction, to obtain an instruction identification for a memory access instruction of a plurality of memory access instructions and a register identification of at least one of a plurality of registers, based on a first and second target fields of the nullification instruction. The at least one register and the memory access instruction associated with the instruction identification are nullified. Based on the nullified memory access instruction, a subsequent memory access instruction is executed.
Abstract:
Different processor architectures are described to evaluate and track dependencies required by instructions. The processors may hold or queue instructions that require output of other instructions until required data and resources are available which may remove the requirement of NOPs in the instruction memory to resolve dependencies and pipeline hazards. The processor may divide instruction data into bundles for parallel execution and provide speculative execution. The processor may include various components to implement an evaluation unit, execution unit and termination unit.
Abstract:
Apparatus and methods are disclosed for nullifying memory store instructions and one or more registers identified in a target field of a nullification instruction. In some examples of the disclosed technology, an apparatus can include memory and one or more block-based processor cores configured to fetch and execute a plurality of instruction blocks. One of the cores can include a control unit configured, based at least in part on receiving a nullification instruction, to obtain an instruction identification for a memory access instruction of a plurality of memory access instructions and a register identification of at least one of a plurality of registers, based on a first and second target fields of the nullification instruction. The at least one register and the memory access instruction associated with the instruction identification are nullified. Based on the nullified memory access instruction, a subsequent memory access instruction is executed.
Abstract:
A Conditional Transaction End (CTEND) instruction is provided that allows a program executing in a nonconstrained transactional execution mode to inspect a storage location that is modified by either another central processing unit or the Input/Output subsystem. Based on the inspected data, transactional execution may be ended or aborted, or the decision to end/abort may be delayed, e.g., until a predefined event occurs. For instance, when the instruction executes, the processor is in a nonconstrained transaction execution mode, and the transaction nesting depth is one at the beginning of the instruction, a second operand of the instruction is inspected, and based on the inspected data, transaction execution may be ended or aborted, or the decision to end/abort may be delayed, e.g., until a predefined event occurs, such as the value of the second operand becomes a prespecified value or a time interval is exceeded.
Abstract:
A TRANSACTION BEGIN instruction begins execution of a transaction and includes a general register save mask having bits, that when set, indicate registers to be saved in the event the transaction is aborted. At the beginning of the transaction, contents of the registers are saved in memory not accessible to the program, and if the transaction is aborted, the saved contents are copied to the registers.
Abstract:
A method and system uses exceptions for code specialization in a system that supports transactions. The method and system includes inserting one or more branchless instructions into a sequence of computer instructions. The branchless instructions include one or more instructions that are executable if a commonly occurring condition is satisfied and include one or more instructions that are configured to raise an exception if the commonly occurring condition is not satisfied.
Abstract:
An instruction translator receives a conditional load/store instruction that specifies a condition, destination/data register, base register, offset source, and memory addressing mode. The instruction instructs the microprocessor to load data from a memory location into the destination register (conditional load) or store data to the memory location from the data register (conditional store) only if the condition flags satisfy the condition. The offset source specifies whether the offset is an immediate value or a value in an offset register. The addressing mode specifies whether the base register is updated when the condition flags satisfy the condition. The instruction translator translates the conditional load instruction into a number of microinstructions, which varies as a function of the offset source, addressing mode, and whether the conditional instruction is a conditional load or store instruction. An out-of-order execution pipeline executes the microinstructions to generate results specified by the instruction.