Abstract:
In a non-volatile memory, a method of performing a sensing operation to read a non-volatile (NV) element includes a first and a second phase. During the first phase, the NV element is coupled via a sense path transistor to a first capacitive element at a first input of an amplifier stage and a reference cell is coupled via a reference sense path transistor to a second capacitive element at a second input of the amplifier stage. During the second phase, the NV element is coupled via the sense path transistor to the second capacitive element and the reference cell is coupled via the reference sense path transistor to the first capacitive element. During the first phase, the first and second capacitive elements are initialized to voltages representative of states of the NV element and reference cell, respectively. During the second phase, the voltage differential between the two voltages is amplified.
Abstract:
A crossbar array, comprises a plurality of row lines, a plurality of column lines intersecting the plurality of row lines at a plurality of intersections, a plurality of junctions coupled between the plurality of row lines and the plurality of column lines at a portion of the plurality of intersections, and a plurality of diagonal control lines coupled to the plurality of junctions. Each junction comprises a resistive memory element and a transistor, and the junctions are positioned to calculate a matrix multiplication of a first matrix and a second matrix.
Abstract:
A circuit (100) is provided. A first end (108) of a resistive random access memory (102) included in the circuit (100) is a first end of the circuit (100), and a second end (116) of the resistive random access memory is connected to a first end (118) of a first switching device (104) and a first end (120) of a second switching device (106) separately, where a threshold voltage of the resistive random access memory (102) is U; a second end (112) of the first switching device (104) is a second end of the circuit; a second end of the second switching device (106) is a third end (110) of the circuit; the first switching device (104) further includes a first control end (114); the second switching device (106) further includes a second control end (122); and the first control end (114) and the second control end (122) are configured to make the first switching device (104) closed and make the second switching device (106) open at the same time, or to make the first switching device (104) open and make the second switching device (106) closed at the same time. Therefore, a working status of the resistive random access memory (102) is flexibly controlled.
Abstract:
In a non-volatile memory, a method of performing a sensing operation to read a non-volatile (NV) element includes a first and a second phase. During the first phase, the NV element is coupled via a sense path transistor to a first capacitive element at a first input of an amplifier stage and a reference cell is coupled via a reference sense path transistor to a second capacitive element at a second input of the amplifier stage. During the second phase, the NV element is coupled via the sense path transistor to the second capacitive element and the reference cell is coupled via the reference sense path transistor to the first capacitive element. During the first phase, the first and second capacitive elements are initialized to voltages representative of states of the NV element and reference cell, respectively. During the second phase, the voltage differential between the two voltages is amplified.
Abstract:
Junction diodes fabricated in standard CMOS logic processes can be used as program selectors for One-Time Programmable (OTP) devices, such as electrical fuses. At least one portion of the electrical fuse can have at least one extended area to accelerate programming. The program selector can be a diode or MOS that can be turned on through the channel or the source/drain junction. The OTP device can have the at least one OTP element coupled to at least one diode in a memory cell. A method of programming electrical fuses reliably is also disclosed. Advantageously, by controlled programming where programming current is maintained below a critical current, programming is reliable. In another embodiment, a programmable resistive device cell can use at least one MOS device as selector which can be programmed or read by turning on a source junction diode of the MOS or a channel of the MOS.