摘要:
Solid-state memory having a non-linear current-voltage (I-V) response is provided. By way of example, the solid-state memory can be a selector device. The selector device can be formed in series with a non-volatile memory device via a monolithic fabrication process. Further, the selector device can provide a substantially non-linear I-V response suitable to mitigate leakage current for the non-volatile memory device. In various disclosed embodiments, the series combination of the selector device and the non-volatile memory device can serve as one of a set of memory cells in a 1-transistor, many-resistor resistive memory cell array.
摘要:
Three dimensional memory arrays and methods of forming the same are provided. An example three dimensional memory array can include a stack comprising a plurality of first conductive lines separated from one another by at least an insulation material, and at least one conductive extension arranged to extend substantially perpendicular to the plurality of first conductive lines such that the at least one conductive extension intersects each of the plurality of first conductive lines. Storage element material is arranged around the at least one conductive extension, and a select device is arranged around the storage element material. The storage element material is radially adjacent an insulation material separating the plurality of first conductive lines, and the plurality of materials arranged around the storage element material are radially adjacent each of the plurality of first conductive lines.
摘要:
In one example, a customizable nonlinear electrical device includes a first conductive layer, a second conductive layer, and a thin film metal-oxide layer sandwiched between the first conductive layer and the second conductive layer to form a first rectifying interface between the metal-oxide layer and the first conductive layer and a second rectifying interface between the metal-oxide layer and the second conductive layer. The metal-oxide layer includes an electrically conductive mixture of co-existing metal and metal oxides. A method forming a nonlinear electrical device is also provided.
摘要:
Some embodiments include apparatus and methods having a memory cell with a first electrode, a second electrode, and a dielectric located between the first and second electrodes. The dielectric may be configured to allow the memory cell to form a conductive path in the dielectric from a portion of a material of the first electrode to represent a first value of information stored in the memory cell. The dielectric may also be configured to allow the memory cell to break the conductive path to represent a second value of information stored in the memory cell.
摘要:
Disclosed is a memory element array (100) comprising a plurality of memory elements arranged in an array, wherein the memory elements are switching elements (70) each including a gap (71) of nanometer order in which a switching phenomenon of resistance is caused by applying a predetermined voltage between electrodes, and the memory element array is provided with tunnel elements (40) respectively connected to the switching elements in series, each of the tunnel elements preventing generation of a sneak path current flowing to another switching element at a time of applying the predetermined voltage.
摘要:
Some embodiments include cross-point memory structures. The structures may include a line of first electrode material extending along a first horizontal direction, a multi-sided container of access device materials over the first electrode material, a memory element material within the multi-sided container, and a line of second electrode material over the memory element material and extending along a second horizontal direction that is orthogonal to the first horizontal direction. Some embodiments include methods of forming memory arrays. The methods may include forming a memory cell stack over a first electrode material, and then patterning the first electrode material and the memory cell stack into a first set of spaced lines extending along a first horizontal direction. Spaced lines of second electrode material may be formed over the first set of spaced lines, and may extend along a second horizontal direction that is orthogonal to the first horizontal direction.
摘要:
Forming a metal-insulator diode and carbon memory element in a single damascene process is disclosed. A trench having a bottom and a sidewall is formed in an insulator. A first diode electrode is formed in the trench during a single damascene process. A first insulating region comprising a first insulating material is formed in the trench during the single damascene process. A second insulating region comprising a second insulating material is formed in the trench during the single damascene process. A second diode electrode is formed in the trench during the single damascene process. The first insulating region and the second insulating region reside between the first diode electrode and the second diode electrode to form a metal-insulator-insulator-metal (MIIM) diode. A region of carbon is formed in the trench during the single damascene process. At least a portion of the carbon is electrically in series with the MIIM diode.
摘要:
A first wire layer (19) including first memory wires (12) is connected to a second wire layer (20) including second memory wires (17) via first contacts (21) penetrating a first interlayer insulating layer (13). The first wire layer (13) is connected to and led out to upper wires (22) via second contacts (26) connected to the second wire layer (20) and penetrating the second interlayer insulating layer (18). The first contacts (21) penetrate semiconductor layer (17b) or insulator layer (17c) of the second wire layer (20).
摘要:
The present application concerns vertical stacks of memory units (14, 16, 18), with individual memory units each having a memory element (28), a wordline (22), a bitline (24) and at least one diode (26). The memory units may correspond to cross-point memory, and the diodes may correspond to band-gap engineered diodes containing two or more dielectric layers sandwiched between metal layers. Tunneling properties of the dielectric materials and carrier injection properties of the metals may be tailored to engineer desired properties into the diodes. The diodes may be placed between the bitlines and the memory elements, or may be placed between the wordlines and memory elements. Some embodiments include methods of forming cross-point memory arrays. The memory arrays may contain vertical stacks- of memory unit cells, with individual unit cells containing cross-point memory and at least one diode, and adjacent memory units being spaced from one another by a passivation material (20).
摘要:
A memory structure comprises first conductive lines extending in a first direction over portions of a base structure, storage element structures extending in the first direction over the first conductive lines, isolated electrode structures overlying portions of the storage element structures, select device structures extending in a second direction perpendicular to the first direction over the isolated electrode structures, second conductive lines extending in the second direction over the select device structures, additional select device structures extending in the second direction over the second conductive lines, additional isolated electrode structures overlying portions of the additional select device structures, additional storage element structures extending in the first direction over the additional isolated electrode structures, and third conductive lines extending in the first direction over the additional storage element structures. Cross-point memory arrays, electronic systems, and related methods are also described.