Abstract:
Provided are a level shifter circuit and a corresponding method for controlling voltage levels of a clock signal and an inverted clock signal for driving gate lines of a ASG thin film transistor liquid crystal display panel, where the level shifter circuit includes first and second level shifters, the first level shifter controls the voltage level of the clock signal to swing between a negative external voltage level and a positive external voltage level in response to a clock activating signal, and increases the voltage level of the clock signal from the negative external voltage level to a power supply voltage level or decreases it from the positive external voltage level to a ground voltage level while a pre-charge clock activating signal is activated, the second level shifter controls the voltage level of the inverted clock signal to swing between the negative external voltage level and the positive external voltage level in response to an inverted clock activating signal, and increases the voltage level of the inverted clock signal from the negative external voltage level to the power supply voltage level or decreases it from the positive external voltage level to the ground voltage level while an inverted pre-charge clock activating signal is activated, and the level shifter circuit increases or decreases the voltage levels of the clock signal and inverted clock signal using a battery voltage or a ground voltage, thereby reducing current consumption caused by the increase or decrease in the voltage level.
Abstract:
A source driver, a display device including the same, and a method of driving the display device are provided. The source driver includes a global block configured to output “k” global gamma voltage signals, where “k” is 2 or an integer greater than 2. Each “k” global gamma voltage signal comprises a plurality of grayscale voltages and a pre-emphasis voltage that is output from the global block prior to each of the plurality of grayscale voltages. A channel driver is configured to select a global gamma voltage signal of the “k” global gamma voltage signals. The selected global gamma voltage signal includes a grayscale voltage of the plurality of grayscale voltages. The channel driver outputs the grayscale voltage to a source line in response to the channel driver receiving image data.
Abstract:
Provided are a level shifter circuit and a corresponding method for controlling voltage levels of a clock signal and an inverted clock signal for driving gate lines of a ASG thin film transistor liquid crystal display panel, where the level shifter circuit includes first and second level shifters, the first level shifter controls the voltage level of the clock signal to swing between a negative external voltage level and a positive external voltage level in response to a clock activating signal, and increases the voltage level of the clock signal from the negative external voltage level to a power supply voltage level or decreases it from the positive external voltage level to a ground voltage level while a pre-charge clock activating signal is activated, the second level shifter controls the voltage level of the inverted clock signal to swing between the negative external voltage level and the positive external voltage level in response to an inverted clock activating signal, and increases the voltage level of the inverted clock signal from the negative external voltage level to the power supply voltage level or decreases it from the positive external voltage level to the ground voltage level while an inverted pre-charge clock activating signal is activated, and the level shifter circuit increases or decreases the voltage levels of the clock signal and inverted clock signal using a battery voltage or a ground voltage, thereby reducing current consumption caused by the increase or decrease in the voltage level.
Abstract:
A source driver control device and method. The source driver control device includes a memory, a first write controller, a second write controller and a write clock signal generator. The memory receives display data corresponding to an image and stores the display data in response to a write clock signal. The first write controller generates a first write enable signal in response to a vertical back porch and a horizontal back porch. The second write controller generates a second write enable signal, which is enabled for each write cycle of storing the display data in the memory, in response to the first write enable signal. The write clock signal generator generates the write clock signal in a period in which the second write enable signal is enabled. The write cycle corresponds to a multiple of a reference write cycle. The source driver control device and method can reduce power consumed when the display data is written in the memory.
Abstract:
A differential delay circuit type ring oscillator allows for an increase in operation enabling frequency and dynamic range. At each stage of the ring, delay circuit output signals arc linearly varied above and below the circuit switching level. The ring oscillator includes a plurality of differential delay circuits coupled in series in a ring configuration, a differential amplifier, and a comparator. Each of the differential delay circuits receives first and second differential input signals, and delays the received signals by a predetermined time in response to a predetermined control signal to generate first and second differential output signals. The differential amplifier receives the first and the second differential output signals of one of the differential delay circuits and amplifies the received signals to generate first and second differential amplified signals. The comparator receives first and the second differential amplified signals, and compares them to generate an oscillating signal in accordance with the comparison results.
Abstract:
A voltage stabilizer circuit for alternately or simultaneously stabilizing first and second generated voltages includes shared capacitor connected between the first and second generated voltages. The voltage stabilizer circuit may further include first and second switches for alternately connecting the first and second electrode of the shared capacitor to a ground. The alternation of the stabilized first and second voltages output by the voltage stabilizer circuit can be synchronized with a pixel polarity inversion mode signal output by the internal driver circuit of an LCD display.
Abstract:
Provided is a boosting voltage generating element used in a semiconductor integrated circuit, more particularly, is a charge pump. The charge pump includes a first converting unit and a second converting unit. The first converting unit is configured to receive a first voltage in response to a first clock signal to generate a first pumping voltage. The first converting unit is also configured to alternately output the first pumping voltage to a first terminal and a second terminal. The second converting unit is configured to receive the first pumping voltage through the first terminal or the second terminal in response to a second clock signal and a third clock signal respectively, to generate a second pumping voltage The second converting unit is also configured to provide the second pumping voltage to an output terminal. The second converting unit is configured to provide the second pumping voltage to the output terminal for at least half of a period of the second clock signal or the third clock signal.
Abstract:
A power converting circuit of a display driver includes a positive voltage generator and a negative voltage generator. The positive voltage generator includes a first capacitive DC-DC converter and a first inductive DC-DC converter, and generates a positive source voltage by selectively using one of the first capacitive DC-DC converter, the first inductive DC-DC converter, or a first external power supply voltage. The negative voltage generator includes a second capacitive DC-DC converter and a second inductive DC-DC converter, and generates a negative source voltage by selectively using one of the second capacitive DC-DC converter, the second inductive DC-DC converter, or a second external power supply voltage.
Abstract:
Provided is a boosting voltage generating element used in a semiconductor integrated circuit, more particularly, is a charge pump. The charge pump includes a first converting unit and a second converting unit. The first converting unit is configured to receive a first voltage in response to a first clock signal to generate a first pumping voltage. The first converting unit is also configured to alternately output the first pumping voltage to a first terminal and a second terminal. The second converting unit is configured to receive the first pumping voltage through the first terminal or the second terminal in response to a second clock signal and a third clock signal respectively, to generate a second pumping voltage The second converting unit is also configured to provide the second pumping voltage to an output terminal. The second converting unit is configured to provide the second pumping voltage to the output terminal for at least half of a period of the second clock signal or the third clock signal.
Abstract:
An output buffer capable of reducing the noise and distortion of buffered output data while operating at high speed, and a buffering method performed in the output buffer are provided. An output buffer for buffering input data and outputting buffered input data as output data comprises first through M-th and (M+1)th through (M+N)th delay means for delaying the input data for (M+N) different delay times and outputting one by one delayed data in a predetermined order at time intervals of T M + N , where M and N are each integers equal to or greater than 2, and T corresponds to the time necessary for the level of the output data to change, and a data output means for outputting the output data in response to the outputs of the first through (M+N)th delay means.