摘要:
A method of fabricating a high-voltage semiconductor device includes the following steps: providing a semiconductor layer; forming a plurality of trenches in the semiconductor layer to define a plurality of pillars of a first conductivity type in the semiconductor layer between adjacent trenches, wherein the trenches extend from a top surface of the semiconductor layer toward a bottom surface of the semiconductor layer; forming a charge compensation layer of a second conductivity type over at least sidewalls of each trench to a predetermined thickness thereby forming a groove in each trench; and substantially filling each groove with a charge compensation plug of the first conductivity type.
摘要:
Electron emission sources, electron emission devices including the electron emission sources, and methods of making the electron emission sources are provided. The electron emission source includes a carbon-based material, and a degradation prevention material for preventing degradation of the carbon-based material. A binding energy between the degradation prevention material and external oxygen is greater than a binding energy between the carbon-based material and the external oxygen. The electron emission sources have excellent field emission efficiencies and long lifetimes.
摘要:
A high-voltage semiconductor device includes a semiconductor layer having a plurality of pillars of a first conductivity type defined by a plurality of trenches which extend from a top surface of the semiconductor layer toward a bottom surface thereof. A charge compensation layer of a second conductivity type is disposed over at least sidewalls of each trench to a predetermined thickness to form a groove in each trench. A charge compensation plug of the first conductivity type substantially fills each groove.
摘要:
An electron emission source including a carbon-based material coated with metal carbide in the surface coating layer, of which the metal has a negative Gibbs free energy when forming the metal carbide at 1,500 K or lower, a method of preparing electron emission sources, and an electron emission device including the electron emission source. The electron emission source includes a carbon nanotube coated with metal carbide or a carbon nanotube having a metal carbide layer and a metal coating layer, which are sequentially formed thereon. Thus, the electron emission source has long lifespan without deterioration of electron emitting characteristics. The electron emission source can be used to manufacture electron emission devices with improved reliability.
摘要:
The present invention provides a Light Emitting Diode (LED) array module for providing backlight, which can be used as an independent device with a plurality of LEDs being integrally packaged, and which can be universally used regardless of a screen size, and a backlight unit having the same. The LED array module used as a light source of backlight includes a bar-shaped Printed Circuit Board (PCB) on which conductive patterns for transmitting power are formed, a base formed on the PCB and made of a heat conductive material, a plurality of LED chips mounted on the base in a line and electrically connected to the conductive patterns of the PCB, a reflector formed to surround the plurality of the LED chips and adapted to reflect light radiated from the plurality of LED chips upward, and a lens formed above the plurality of LED chips and reflector to have a bar shape and adapted to diffuse the light radiated from the plurality of LED chips and reflector in a horizontal direction.
摘要:
The present invention relates to photoresist solution for phosphor slurry for use in the color cathode ray tube. The photoresist solution of the present invention comprises Diazo or Bisazide photosensitizer; polymer. which is mixed with said Diazo or Bisazide photosensitizer, obtained by polymerization of hydroxy ethyl acrylate base. The photoresist solution of the present invention improves the adhesive strength by using of the Diazo or Bisazide photosensitizer and the polymer, thus the green, blue and red phosphor screen being uniformly formed and the color residue being disappeared. Further, since the photosensitizer not containing heavy metal is used, it does not cause any environmental problem. Also, it can be stored for a long time by using the initiator without hydrochloric acid at the time of polymerization.
摘要:
Disclosed herein is an MEMS variable capacitor and its driving method, the MEMS variable capacitor including, a first electrode, a second electrode floating over the first electrode upper part, a fixed electrode separated at the second electrode side surface, and a drifting electrode placed between the second electrode and the fixed electrode, connected to the second electrode, and physically contacting the fixed electrode by a voltage applied to the fixed electrode.
摘要:
Disclosed is an impedance matching device. Variable devices of the impedance matching device installed in a mobile terminal, such as a portable terminal, are configured to have a MEMS structure. The MEMS structure and other components are integrated as one package, so the manufacturing cost is reduced and the manufacturing efficiency is improved.
摘要:
A method of fabricating a high-voltage semiconductor device includes the following steps: providing a semiconductor layer; forming a plurality of trenches in the semiconductor layer to define a plurality of pillars of a first conductivity type in the semiconductor layer between adjacent trenches, wherein the trenches extend from a top surface of the semiconductor layer toward a bottom surface of the semiconductor layer; forming a charge compensation layer of a second conductivity type over at least sidewalls of each trench to a predetermined thickness thereby forming a groove in each trench; and substantially filling each groove with a charge compensation plug of the first conductivity type.
摘要:
A negative electrode for a lithium rechargeable battery includes a current collector, and a negative active material layer on the current collector, the negative active material layer including a silicon-based active material, a carbon-based active material, and an aqueous additive including an aqueous binder and an agent for increasing viscosity, the silicon-based active material being coated with an organic binder, wherein the aqueous additive is between portions of the silicon-based active material, between portions of the carbon-based active material, or between the silicon-based active material and the carbon-based active material.