Abstract:
Methods and associated structures of forming a microelectronic device are described. Those methods may include plasma etching a portion of a source/drain region of a transistor, and then selectively wet etching the source drain region along a (100) plane to form at least one (111) region in the recessed source/drain region.
Abstract:
Methods and associated structures of forming a microelectronic device are described. Those methods may include plasma etching a portion of a source/drain region of a transistor, and then selectively wet etching the source drain region along a (100) plane to form at least one (111) region in the recessed source/drain region.
Abstract:
Optimal strain in the channel region of a PMOS transistor is provided by silicon alloy material in the junction regions of the device in a non-planar relationship with the surface of the substrate. The silicon alloy material, the dimensions of the silicon alloy material, as well as the non-planar relationship of the silicon alloy material with the surface of the substrate are selected so that the difference between the lattice spacing of the silicon alloy material and of the substrate causes strains in the silicon alloy material below the substrate surface, as well as above the substrate surface, to affect an optimal silicon alloy induced strain in the substrate channel. In addition, the non-planar relationship may be selected so that any strains caused by different lattice spaced layers formed over the silicon alloy material have a reduced effect on the strain in the channel region.
Abstract:
A method of forming a transistor comprising: defining undercut recesses in the substrate at the source/drain regions thereof, the undercut recesses extending beneath the gate electrode; creating a halo implant region beneath the gate electrode between the recesses; and providing raised source/drain structures in the undercut recesses after creating the halo implant region.
Abstract:
Methods and associated structures of forming a microelectronic device are described. Those methods may include amorphizing at least one contact area of a source/drain region of a transistor structure by implanting through at least one contact opening, forming a first layer of metal on the at least one contact area, forming a second layer of metal on the first layer of metal, selectively etching a portion of the second metal layer, and annealing the at least one contact area to form at least one silicide.
Abstract:
Methods and associated structures of forming a microelectronic device are described. Those methods may include amorphizing at least one contact area of a source/drain region of a transistor structure by implanting through at least one contact opening, forming a first layer of metal on the at least one contact area, forming a second layer of metal on the first layer of metal, selectively etching a portion of the second metal layer, annealing the at least one contact area to form at least one silicide, and removing the unreacted first metal layer and second metal layer from the transistor structure and forming a conductive material in the at least one contact opening.
Abstract:
Methods and associated structures of forming a microelectronic device are described. Those methods may include plasma etching a portion of a source/drain region of a transistor, and then selectively wet etching the source drain region along a (100) plane to form at least one (111) region in the recessed source/drain region.
Abstract:
A method of providing a halo implant region in a substrate of a MOS device having a gate electrode thereon and defining source/drain regions, a MOS device fabricated according to the above method, and a system comprising the MOS device. The method comprises: defining undercut recesses in the substrate at the source/drain regions thereof, the undercut recesses extending beneath the gate electrode; creating a halo implant region beneath the gate electrode between the recesses; and providing raised source/drain structures in the undercut recesses after creating the halo implant region.
Abstract:
An intentional recess or indentation is created in a region of semiconductor material that will become part of a channel of a metal oxide semiconductor (MOS) transistor structure. A layer is created on a surface of the recess to induce an appropriate type of stress in the channel.