Abstract:
A laser light source 1 is provided with a first reflection mirror 11, a laser medium 12, an aperture 13, an output mirror 14, a half mirror 15, a light beam diameter adjuster 16, and a second reflection mirror 17, and outputs laser oscillation light 31 reflected by the half mirror 15 to the outside. The main resonator is composed by the first reflection mirror 11 and the output mirror 14 disposed so as to be opposed to each other with the laser medium 12 placed therebetween. The external resonator is composed by the output mirror 14 and the second reflection mirror 17 disposed so as to be opposed to each other. The second reflection mirror 17 is configured such that it gives amplitude or phase variations to respective positions in the section of a light beam when the light is reflected, the second reflection mirror presents an amplitude or phase variation distribution, and determines the transverse mode of the laser oscillation light 31 based on the amplitude or phase variation distribution. Thus, a laser light source capable of easily controlling the transverse mode of the laser oscillation light can be realized.
Abstract:
A laser light shaping optical system 1 in accordance with an embodiment of the present invention comprises an intensity conversion lens 11 for converging and shaping an intensity distribution of laser light incident thereon into a desirable intensity distribution; a phase correction lens 12 for correcting the laser light emitted from the intensity conversion lens 11 into a plane wave by homogenizing a phase thereof; and an expansion/reduction optical system 20, arranged between the intensity conversion lens 11 and the phase correction lens 12, for expanding or reducing the laser light emitted from the intensity conversion lens 11.
Abstract:
The present invention relates to a reflective spatial light modulator enabling improvement of light resistance and prevention of damaging of the liquid crystal layer. The reflective spatial light modulator controls phases of the incident light and a reflected light while reflecting light made incident from a front side, and comprises a liquid crystal layer, a dielectric multilayer film, and a phase shift layer. The liquid crystal layer is filled with a liquid crystal comprised of a light modulating material, and modulates the incident light. The dielectric multilayer film reflects the incident light. The phase shift layer is disposed between the liquid crystal layer and the dielectric multilayer film to shift phases of the incident light and the reflected light at an interface of the liquid crystal layer.
Abstract:
A temperature sensitive fluid type fan coupling apparatus is provided which can prevent "an accompanying rotation" phenomenon from being generated so as to reduce fan sound and improve fuel consumption. The fan coupling apparatus comprises a sealing device box including a cover and a case which is separated into an oil reserving chamber and a torque transmission chamber by a partition plate. A drive disc is fixed to a rotary shaft body and is disposed inside the torque transmission chamber to support the sealing device box. A circulating flow passage delivers oil from the torque transmission chamber to the oil reserving chamber. A valve member for opening and closing a supply hole communicating between the torque transmission chamber and the oil reserving chamber is provided so as to increase and reduce an effective contact area for the oil in the drive disc and torque transmission gap portion, thereby controlling a torque transmission to the side of the sealing device box driven by the rotary shaft body. Barrages for holding the oil, in the oil reserving chamber and not the torque transmission chamber, are provided on both sides of the supply hole, thereby preventing the "accompanying rotation" phenomenon in the driven side of the sealing device box due to the excessive oil.
Abstract:
A composite substrate for a waterproofing structure, which comprises a fiber mat and a closed cell foam sheet which are integrated by needling.
Abstract:
A laser light shaping and wavefront controlling optical system 1 in accordance with an embodiment of the present invention comprises an intensity conversion lens 24 for converting and shaping an intensity distribution of laser light incident thereon into a desirable intensity distribution; an optical modulation device 34 for modulating the laser light emitted from the intensity conversion lens 24 so as to control a wavefront thereof; a condenser optical system 36 for converging the laser light issued from the optical modulation device 34; and an image-forming optical system 30, arranged between the optical modulation device 34 and the condenser optical system 36, having an entrance-side imaging plane between a plane 24x where the laser light emitted from the intensity conversion lens 24 attains the desirable intensity distribution and a modulation plane 34a of the optical modulation device 34 and an exit-side imaging plane on a pupil plane 36a of the condenser optical system 36.
Abstract:
A laser light shaping and wavefront controlling optical system 1 in accordance with an embodiment of the present invention comprises an intensity conversion lens 24 for converting and shaping an intensity distribution of laser light incident thereon into a desirable intensity distribution; an optical modulation device 34 for modulating the laser light emitted from the intensity conversion lens 24 so as to control a wavefront thereof; a condenser optical system 36 for converging the laser light issued from the optical modulation device 34; and an image-forming optical system 30, arranged between the optical modulation device 34 and the condenser optical system 36, having an entrance-side imaging plane between a plane 24x where the laser light emitted from the intensity conversion lens 24 attains the desirable intensity distribution and a modulation plane 34a of the optical modulation device 34 and an exit-side imaging plane on a pupil plane 36a of the condenser optical system 36.
Abstract:
A laser light shaping and wavefront controlling optical system 1 in accordance with an embodiment of the present invention comprises an intensity conversion lens 11 for converging and shaping an intensity distribution of laser light incident thereon into a desirable intensity distribution; a light modulator 12 for modulating the laser light emitted from the intensity conversion lens 11 so as to perform wavefront control; and an expansion/reduction optical system 20, arranged between the intensity conversion lens 11 and the light modulator 12, for expanding or reducing the laser light emitted from the intensity conversion lens 11.
Abstract:
A light modulating device (101A) comprises a reflective SLM (107) for modulating a laser beam (Lr) entering along a first optical path extending in a first direction; a dielectric multilayer film mirror (106), formed on a light transmitting member (105) transparent to illumination light (Li), for reflecting the laser beam (Lr) incident on a front face thereof from the reflective SLM (107) onto a second optical path extending in a second direction intersecting the first direction, and transmitting the illumination light (Li) incident on a rear face thereof onto the second optical path; and a light collecting lens (109) for receiving the illumination light (Li) and laser beam (Lr) from the dielectric multilayer film mirror (106) and converging the illumination light (Li) and laser beam (Lr).