Abstract:
A method is described for rapid and economical activation and/or preconditioning of gas purification substrates by providing forced convection of the preconditioning or activating gas through the pores of the substrate. The gas is pumped into the substrate-containing vessel and raised to an elevated pressure, which is maintained for a short predetermined time, followed by venting of contents of the vessel. The vessel is again pressurized with the purging gas to an elevated level, and the elevated pressure is maintained for a short predetermined time, followed by venting of the vessel. This cycle is repeated as often as needed or desired. Activation and/or preconditioning can be accomplished in a much shorter time and with much less gas usage compared to diffusion preconditioning and activation processes. This process is particularly suited for preconditioning and activation of gas purifier substrates for decontamination of gases down to ≦1 ppm contaminants.
Abstract:
A method for the decontamination of fluid (liquid or supercritical) carbon dioxide fluid, especially of hydrocarbon contaminants, down to ≦100 ppb concentration are described. The critical component is a high silica zeolite, preferably a high silica Y-type zeolite, ZSM-5 or a high silica mordenite, which in a variety of physical forms is capable of decontaminating such fluid CO2 to ≦100 ppb, ≦10-50 ppb, or ˜1 ppb, without being detrimentally affected by the supercritical operating environment. The high silica zeolite may be produced by the removal of alumina from a natural or synthetic zeolite while retaining the desirable zeolite structure, to a silica:alumina ratio of from 20-2000:1. Preferably the zeolite is disposed in separate quantities in at least two vessels, which operate alternately. A portion of the purified product from the operating vessel is directed to the other vessel and there used to remove accumulated contaminants from that vessel's zeolite. The process thus provides self-regeneration, in that regeneration of one vessel occurs while the other vessel decontaminates contaminated fluid carbon dioxide, so that use of the two can be alternated for substantially continual production of purified fluid carbon dioxide. The invention provides purified fluid carbon dioxide used in manufacture of such products as high purity electronic, optical, prosthetic or similar products or polymers or pharmaceuticals or in beverages.
Abstract:
A method for hydride gas purification uses materials having at least one lanthanide metal or lanthanide metal oxide. The method reduces contaminants to less than 100 parts per billion (ppb), preferably 10 ppb, more preferably 1 ppb. The material can also include transition metals and transition metal oxides, rare earth elements and other metal oxides. The invention also includes materials for use in the method of the invention.
Abstract:
A method is described for rapid and economical activation and/or preconditioning of gas purification substrates by providing forced convection of the preconditioning or activating gas through the pores of the substrate. The gas is pumped into the substrate-containing vessel and raised to an elevated pressure, which is maintained for a short predetermined time, followed by venting of contents of the vessel. The vessel is again pressurized with the purging gas to an elevated level, and the elevated pressure is maintained for a short predetermined time, followed by venting of the vessel. This cycle is repeated as often as needed or desired. Activation and/or preconditioning can be accomplished in a much shorter time and with much less gas usage compared to diffusion preconditioning and activation processes. This process is particularly suited for preconditioning and activation of gas purifier substrates for decontamination of gases down to ≦1 ppm contaminants.
Abstract:
A method is disclosed for providing a pure gas for use medical procedures in which the gas is contaminated with other gases during the procedure, and then separating the contaminants and recovering and reusing the decontaminated gas. The method is most advantageously used in medical imaging processes, such as magnetic resonance image (MRI), where hyperpolarized image enhancing noble gases, notably He3 or Xe129, are used for image enhancement in brain and lung imaging, and in which the contaminants are normally the exhalant gases from the imaged patient. The contaminated gas is passed through a series of drying and purification steps to remove the exhalant gases and separate the gas. The purified gas is then recovered and stored for reuse. This system prevents the loss of significant amounts of the image enhancing gases, which is important since key gases such as He3 and Xe129 are rare and expensive, and (especially He3) permanently lost once vented. Recovery of medical process gases such as those including isotopes of carbon, fluorine or phosphorus is also contemplated. High quality MR images of lung structures and processes and of brain functions can be obtained using the purified gases from this process.