摘要:
A fluorometric apparatus capable of configuring to have a small size and operability requiring a simple and easy operation of centrifuging a specimen in a container a rotation center of which is detachably supported by a rotation axis (not shown), exciting the specimen by means of an N2 laser apparatus and an excitation light irradiator for guiding the laser light emitted from the N2 laser apparatus, and receiving fluorescence having two types of wavelengths emitted from antibodies labeled with fluorescent dyes in the specimen in a region separate from the region in which the excitation light is radiated by a predetermined angle by using a photomultiplier tube, obtaining a ratio of light intensity for each wavelength, comparing the obtained ratio with a standard value, and estimating a target protein concentration.
摘要:
It is an object to provide a measuring apparatus and method which can easily measure an amount of a biological component such as glucose without requiring an ordinary person who is to be measured to have special knowledge and techniques. A measuring apparatus according to an embodiment of the present invention uses a biological component sensor including a plate-shaped sensor chip 112 having a biological component sensing function and a sensor chip holding frame 111 for surrounding and holding the sensor chip 112, and the biological component sensor is disposed in a measuring apparatus main body housing 110. A fixed click-shaped engaging member 118 and a movable click-shaped engaging member 119 are disposed on a sensor chip support table 124 fixed to the measuring apparatus main body housing 110, and they fix and support the sensor chip holding frame 111 and the sensor chip can be thus replaced. The biological component sensor of the measuring apparatus is caused to come in contact with a forearm portion 100 of a human body and a biological component exuded from a contact part of the forearm portion is caused to come in contact with the sensor chip to change the physical or chemical surface property of the sensor chip, thereby measuring the change through an irradiation of an inspection light. Thus, a concentration of the biological component is calculated.
摘要:
An antigen measuring device has an antibody chip. The antibody chip has a substrate. A pair of gratings are formed on the substrate. An antibody-fixed layer surrounded by a wall is formed between the gratings. A light emitting element emits a light beam toward the first grating. A light receiving element receives the light beam which propagates through the substrate under the antibody-fixed layer and is outputfrom the second grating.
摘要:
According to one embodiment, a measuring system using an optical waveguide is provided. The measuring system has an optical waveguide, magnetic fine particles, a magnetic field applying unit, a light source and a light receiving element. The optical waveguide has a sensing area to which first substances having a property of specifically bonding to subject substances to be measured are fixed. Second substances having a property of specifically bonding to the subject substances are fixed to the magnetic fine particle. The magnetic field applying unit generates a magnetic field for moving the magnetic fine particles. The light source inputs a light into the optical waveguide. The light receiving element receives the light output from the optical waveguide.
摘要:
A measuring apparatus uses a biological component sensor including a plate-shaped sensor chip having a biological component sensing function and a sensor chip holding frame surrounding and holding the sensor chip. The biological component sensor is disposed in a measuring apparatus main body housing. A fixed engaging member and movable engaging member disposed on a sensor chip support table fixed to the measuring apparatus main body housing fix and support the sensor chip holding frame, and the sensor chip can be thus replaced. The biological component sensor contacts a forearm portion of a human body, and a biological component exuded from a contact part of the forearm portion is caused to contact the sensor chip to change a physical or chemical surface property of the sensor chip, thereby measuring the change through an irradiation of an inspection light to calculate concentration of the biological component.
摘要:
An optical-waveguide sensor chip includes an optical waveguide having a first substance immobilized on the surface thereof, the first substance being specifically reactive with an analyte substance, and fine particles dispersed on the optical waveguide and having a second substance immobilized on the surface thereof, the second substance being specifically reactive with the analyte substance.
摘要:
An optical glucose sensor chip includes a substrate, a pair of optical elements formed on a surface of the substrate for introducing light into the substrate and for emitting the light from the substrate, and a glucose sensing membrane formed on the surface of the substrate at a position between the optical elements. The sensing membrane includes a color reagent substrate, a first enzyme which oxidizes or reduces glucose, a second enzyme that generates a material which makes the color reagent substrate exhibit color by a reaction with a product obtained by oxidation or reduction of glucose, a nonionic cellulose derivative, and an ionic polymer into which a buffer is incorporated. At least one of the first and second enzymes is coated with the ionic polymer, and the color reagent substrate. The first and second enzymes, the buffer and the ionic polymer are supported by the nonionic cellulose derivative.
摘要:
A fluorometric apparatus capable of configuring to have a small size and operability requiring a simple and easy operation of centrifuging a specimen in a container a rotation center of which is detachably supported by a rotation axis (not shown), exciting the specimen by means of an N2 laser apparatus and an excitation light irradiator for guiding the laser light emitted from the N2 laser apparatus, and receiving fluorescence having two types of wavelengths emitted from antibodies labeled with fluorescent dyes in the specimen in a region separate from the region in which the excitation light is radiated by a predetermined angle by using a photomultiplier tube, obtaining a ratio of light intensity for each wavelength, comparing the obtained ratio with a standard value, and estimating a target protein concentration.
摘要翻译:一种能够构造成具有小尺寸和可操作性的荧光测定装置,其需要简单且容易地将样品离心在容器中,旋转中心由旋转轴线(未示出)可拆卸地支撑,借助于 N 2激光装置和用于引导从N 2激光装置发射的激光的激发光照射器,以及接收从用荧光标记的抗体发射的具有两种类型的波长的荧光 通过使用光电倍增管将与激发光辐射的区域分开的区域中的试样中的染料,得到各波长的光强度比,将所得比值与标准值进行比较, 靶蛋白浓度。
摘要:
The method for measuring the concentration of the measuring object uses a sensor chip comprising an optical waveguide layer and an antibody immobilized layer formed on the surface of the optical waveguide layer, which comprises immobilizing the measuring object and an enzyme-labeled antibody labeled with a labeling enzyme on the antibody immobilized layer of the sensor chip having an immobilized antibody, producing a color-developing and precipitating enzyme reaction product by allowing to react a coloring reagent with the labeling enzyme on the antibody immobilized layer to precipitate the enzyme reaction product on the antibody immobilized layer, allowing to totally reflect a light impinged on the sensor chip from the outside at an interface between the optical waveguide layer and the antibody immobilized layer, and observing to a physical value of the totally reflected light.
摘要:
An optical waveguide type biochemical sensor chip includes a light beam transmittable substrate having at least a first optical element that allows light beam to be impinged to the inside and a second optical element that emits light beam from the inside, an optical waveguide layer that is formed on a main surface of the substrate on which at least one of the first and second optical elements is formed, has a thickness of 3 to 300 μm and is made of a polymer resin material having a higher refractive index than that of the substrate material, and a sensing membrane that is formed on the optical waveguide layer and creates a reaction product having the ability of absorbing the light beam or an evanescent wave of the light beam in response to an introduced specimen.