Abstract:
A electrically conductive hydrogel composition includes: a polar polymer selected from the group consisting of polyvinyl alcohol, polyacrylic acid, polyethylene oxide, poly(2-acrylamido-2-methyl-1-propane sulfonic acid), and combinations thereof; a gelatin; a binding agent including tannic acid and dopamine; a hygroscopic agent including ethylene glycol; a strong electrolyte; and water. A self-healing electrically conductive hydrogel prepared from the electrically conductive hydrogel composition is also provided. A hydrogel-based triboelectric nanogenerator including a self-healing electrically conductive hydrogel film that is made from the self-healing electrically conductive hydrogel is also provided.
Abstract:
The present invention relates to a glass-ceramic composite material, which is a composite material with degradability and osteoconductivity, and is composed of CaO—MgO—SiO2 (CMS glass)+CaMgSi2O6 (CMS ceramic) and CaSO4 (CS ceramic). In addition to the CaO—MgO—SiO2 glass, this synthesized composite material mainly includes two ceramics of CaMgSi2O6 and CaSO4 in crystalline phase, wherein, both the CMS glass and CMS ceramic have high mechanical strength, biocompatibility and osteoconductivity, while CaSO4 has the characteristics of rapid degradation to promote bone ingrowth.
Abstract:
The present invention provides a method for the fabrication of a LaZrGa(OH)x metal hydroxide precursor with a co-precipitation method in a continuous TFR reactor. The present invention also provides a method for the fabrication of an ion-doped all-solid-state lithium-ion conductive material with lithium ionic conductivity, and mixing which in the polymer base material, using a doctor-blade coating method to prepare a free standing double layered and triple layered organic-inorganic hybrid solid electrolyte membrane. Furthermore, the present invention provides an all-solid-state lithium battery using the aforementioned hybrid solid electrolyte membrane and measure the electrochemical performance. The all-solid-state lithium battery may enhance the lithium ionic conductivity, and lower the interfacial resistance between the solid electrolyte membrane and the electrode, therefore the battery may have excellent performance, and prevent the lithium-dendrite formation effectively to enhance the safety.
Abstract:
An electrode component for generating large area atmosphere pressure plasma is provided. The electrode component comprises a first transparent insulation substrate, a first transparent electrode pattern, a second transparent electrode pattern, and a second transparent insulation substrate. The first transparent insulation substrate has a first thickness. The first transparent electrode pattern and the second transparent electrode pattern are formed on the upper surface of the first transparent insulation substrate and has a gap therebetween. The second transparent insulation substrate has a second thickness and covers the first transparent electrode pattern and the second transparent electrode pattern. The first thickness is greater than the second thickness in order to form atmospheric pressure plasma above the second transparent insulation substrate.
Abstract:
An electrode component for generating large area atmosphere pressure plasma is provided. The electrode component comprises a first transparent insulation substrate, a first transparent electrode pattern, a second transparent electrode pattern, and a second transparent insulation substrate. The first transparent insulation substrate has a first thickness. The first transparent electrode pattern and the second transparent electrode pattern are formed on the upper surface of the first transparent insulation substrate and has a gap therebetween. The second transparent insulation substrate has a second thickness and covers the first transparent electrode pattern and the second transparent electrode pattern. The first thickness is greater than the second thickness in order to form atmospheric pressure plasma above the second transparent insulation substrate.
Abstract:
An apparatus for electroplating which is applicable to the electroplating of workpiece is disclosed. The apparatus includes: an electroplating solution container, a target, an absorbent piece, and a power supply. All the electroplating solution, workpiece, absorbent piece, and target are placed inside the electroplating solution container with at least partial portions of each workpiece, absorbent piece and target submerged in the electroplating solution. The positive electrode of the power supply is electrically connected to the target while its negative electrode is electrically connected to the workpiece and absorbent piece simultaneously. When the power supply imposes a current through the circuit, the target releases metal ions into the electroplating solution and metal ions reduce and a metal coating is formed on the workpiece. In the meantime, carbocations in the electroplating solution are adsorbed on the absorbent piece.
Abstract:
An endodontic file with improved fatigue resistance comprising a conical body made of a metal alloy and an amorphous titanium-zirconium-boron film deposited on a surface of the conical body.
Abstract:
A method for physical vapor deposition of an aluminum nitride film, comprising: positioning a substrate and an aluminum target in a chamber; vacuuming the chamber so that a chamber pressure is at a base pressure between 7.1×10−7-5×10−6 torr; conducting a working gas composed of argon gas and nitrogen gas into the chamber so that the chamber pressure is at a working pressure between 3-7 mtorr; and depositing the aluminum nitride film on the substrate by applying a high power impulse power supply to the aluminum target and applying a direct current bias power supply to the substrate under the working pressure and a substrate temperature between room temperature (25° C.) to 200° C.; wherein a power of the high power impulse power supply is between 500-600 W and a frequency thereof is between 750-1250 Hz, and a bias of the direct current bias power supply is between −50-0 V.
Abstract:
A method for physical vapor deposition of an aluminum nitride film, comprising: positioning a substrate and an aluminum target in a chamber; vacuuming the chamber so that a chamber pressure is at a base pressure between 7.1×10−7-5×10−6 torr; conducting a working gas composed of argon gas and nitrogen gas into the chamber so that the chamber pressure is at a working pressure between 3-7 mtorr; and depositing the aluminum nitride film on the substrate by applying a high power impulse power supply to the aluminum target and applying a direct current bias power supply to the substrate under the working pressure and a substrate temperature between room temperature (25° C.) to 200° C.; wherein a power of the high power impulse power supply is between 500-600 W and a frequency thereof is between 750-1250 Hz, and a bias of the direct current bias power supply is between −50-0 V.
Abstract:
This invention discloses a hard magnetic alloy thin film used in a high density perpendicular magnetic recording medium. This film incorporates a glass substrate and a ferromagnetic layer formed on the glass substrate. The ferromagnetic layer is deposited onto the substrate using a sputtering deposition and an annealing. After annealing, a single-layered ferromagnetic film with high perpendicular magnetic anisotropy is achieved.