Abstract:
Earpieces and methods for acute sound detection and reproduction are provided. A method can include measuring an ambient sound level external to an ear canal at least partially occluded by the earpiece, monitoring a change in the ambient sound level for detecting an acute sound, estimating a proximity of the acute sound, and reproducing the acute sound within the ear canal responsive to detecting the acute sound and the proximity.
Abstract:
Methods for audio processing suitable for use with an earpiece are provided. A method includes delivering audio to an ear canal, measuring a residual background noise level within the ear canal, and adjusting the audio based on characteristics of the residual background noise level to maintain a natural audio level. A mixing of an ambient sound signal and an ear canal signal can be used to calculate the residual background noise level. The method can include compensating the residual measurement based on microphone sensitivities.
Abstract:
An earpiece (100) is provided. The earpiece can include an Ambient Sound Microphone (111) configured to capture ambient sound, an Ear Canal Microphone (123) configured to capture internal sound in the ear canal, a memory (208) configured to record at least a portion of the history of the ambient sound and the internal sound, and a processor (121) configured to save a recent portion of the history responsive to an event.
Abstract:
An earpiece (100) and a method (300) personalized voice operable control can include capturing (302) an ambient sound from an Ambient Sound Microphone (111) to produce an electronic ambient signal (426), delivering (304) audio content (402) to an ear canal (131) by way of an Ear Canal Receiver (125) to produce an acoustic audio content (404) and capturing (306) in the ear canal an internal sound (402) from an Ear Canal Microphone (123) to produce an electronic internal signal (410). The electronic internal signal includes an echo of the acoustic audio content and a spoken voice generated by a wearer of the earpiece. The Method also includes detecting (312) the spoken voice in the electronic internal signal in the presence of the echo, and controlling (314) a voice operation of the earpiece when the spoken voice is detected.
Abstract:
An earpiece (100) and a method (640) for acoustic management of multiple microphones is provided. The method can include capturing an ambient acoustic signal from an Ambient Sound Microphone (ASM) to produce an electronic ambient signal, capturing in an ear canal an internal sound from an Ear Canal Microphone (ECM) to produce an electronic internal signal, measuring a background noise signal, and mixing the electronic ambient signal with the electronic internal signal in a ratio dependent on the background noise signal to produce a mixed signal. The mixing can adjust an internal gain of the electronic internal signal and an external gain of the electronic ambient signal based on the background noise characteristics. The mixing can account for an acoustic attenuation level and an audio content level of the earpiece. Other embodiments are provided.
Abstract:
A device (100) and method (300) for enhancing range detection accuracy in ultrasonic touchless sensing applications can include transmitting (302) an ultrasonic signal intended to reflect off a finger and produce an echo, receiving (304) the echo, saving (306) most recent echoes to a history (400), selectively discarding (308) echoes less recently saved in the history to produce a sparse history, identifying (310) a relative phase of the echo with respect to a previously received echo in the sparse history, tracking (312) a location and a movement of the finger from an arrival time of the echo and the relative phase, and providing (314) touchless control to a user interface control in accordance with the location and the movement of the finger.
Abstract:
A system, method and computer readable medium for adjusting volume levels of a Musical Instrument Digital Interface (MIDI) sound file for optimizing play on a sound device. The method on an information processing system includes calculating a first set of loudness levels for each instrument in a MIDI sound file and calculating a second set of loudness levels corresponding to an audio output range of a sound device. The method further includes generating a mapping between the first set of loudness levels and the second set of loudness levels corresponding to the audio output range of the sound device. The method further includes generating a gain term for each note in the MIDI sound file and modifying the MIDI sound file using the second set of loudness levels and the gain term for each note in the MIDI sound file.
Abstract:
The use of SOLA speech time compression/expansion in the present invention method as a means to alter a speaker's talking rate by adjusting the speech rate at which people hear their own voice. A person speaks at a certain comfort rate, which is established and maintained by their own auditory system's capability to hear their own voice as they speak i.e., it is a self-auditory feedback mechanism. Changing the rate (112) at which a talker hears their own voice (130, 2012, 2024) will accordingly change their talking rate. This effect is achieved in this invention by employing a real time processing method (110, 402-416, FIG. 10) that temporarily adjusts the speech rate in an effort to impose this psychoacoustic condition which coerces the speaker into changing their talking rate. This invention permits users to adjust the comfort rate at which they normally speak (124) or to adjust the rate at which others speak to them through the use of a speech processing device or system.
Abstract:
An earpiece (100) and a method (300) for evaluating auditory health are provided. Evaluating auditory health includes embedding (302) at least one excitation signal (402) in an audio clip (404) to produce an embedded excitation signal (406), emitting (304) the embedded excitation signal to an ear canal (131) at least partially occluded by the earpiece, analyzing (312) a recorded sound field within the ear canal during a continuous delivery of the embedded excitation signal to assess auditory health, and adjusting (314) the excitation signal within the audio clip during the emitting based on comparative differences with a reference otoacoustic emission (OAE).
Abstract:
At least one exemplary embodiment is directed to a method and/or a device for voice operated control. The method can include method measuring an ambient sound received from at least one Ambient Sound Microphone, measuring an internal sound received from at least one Ear Canal Microphone, detecting a spoken voice from a wearer of the earpiece based on an analysis of the ambient sound and the internal sound, and controlling at least one voice operation of the earpiece if the presence of spoken voice is detected. The analysis can be a non-difference comparison such as a correlation analysis, a cross-correlation analysis, and a coherence analysis.