Abstract:
A system including a phase comparator to compare a first signal and a second signal to generate a phase error signal, and a controller to generate an adjusted phase error signal from the phase error signal in response to an amplitude of at least one of the first signal and the second signal.
Abstract:
A system including a phase comparator to compare a first signal and a second signal to generate a phase error signal, and a controller to generate an adjusted phase error signal from the phase error signal in response to an amplitude of at least one of the first signal and the second signal.
Abstract:
Systems and method for tracking different types of transconductance cells is shown and described. In these multi-cell systems, the addition of one or more tracking control modules allows circuit designers to advantageously incorporate multiple transconductor topologies and their uniquely beneficial characteristics into their designs, without eradicating its centralized multi-cell tuning functionality.
Abstract:
A transmitter digital signal processor (DSP) circuit has a transmit frequency represented by n-bit data output from a look up table (LUT). The n-bit data is outputted to an n-bit accumulator structured to overflow at a rate based on the output n-bit data to output a phase. The circuit further has device structured to add an n-bit signed constant to the accumulator to offset the frequency represented by the n-bit data output from the LUT. A transceiver on a semiconductor chip may include as part of a transmitter circuit, a transmit DSP circuit that has the LUT, accumulator and device providing an n-bit signed constant to the accumulator to offset a transmit frequency in order to allow a receiver circuit on the transceiver to communicate directly with the transmitter circuit, and thus allowing testing of the transceiver.
Abstract:
Embodiments of a frequency modulated (FM) demodulator and associated methods are generally described. According to but one example embodiment, an apparatus is disclosed comprising a receiver front-end, to receive a signal from one or more antenna(e) and generate quadrature components of the received signal, and a frequency-shifted, cross-multiplied differentiator demodulator, coupled with the receiver front-end, to generate a demodulated representation of the received signal centered at a select intermediate frequency.
Abstract:
A wrist band for a wrist-mounted radio system is provided wherein a metallic wrist-band buckle need not be insulated. The system includes a radio receiver which includes a differential input in a wrist-band antenna with a "null point" at the location of the buckle. The wrist-band antenna is insulated from the wearer's body at all points except at the buckle.
Abstract:
A circuit including a subcircuit having differential signals, and a feedback circuit coupled to the subcircuit. The feedback circuit is configured to measure an offset between the differential signals, to generate a calibration signal in response to the measurement, and to reduce the offset in response to the calibration signal.
Abstract:
Embodiments of the present invention provide a method of centering an operating band of a voltage controlled oscillator around a desired operating frequency. In one embodiment, an adjustable feedback divider provides for driving an output signal to the top and bottom of the operating band. An adjustable period divider and counter provide a plurality of count values for use in determining a mid-point of the operating band. A capacitance bank provides for selectively adjusting a capacitance of the voltage controlled oscillator, thereby adjusting the operating band.
Abstract:
An apparatus comprising a phase lock loop (PLL) and a lock circuit. The PLL may be configured to multiply an input frequency in response to a lock signal. The lock circuit may be configured to generate the lock signal. The PLL may also be configured to select a reference frequency as (i) the input frequency when in a first mode and (ii) a divided frequency of the input frequency when in a second mode.
Abstract:
A digital filter is designed by characterizing a desired filter passband in the frequency domain, transforming this representation into the time domain, selecting weighting coefficients at periodically spaced intervals from this transformed function, and weighting the coefficients with a Gaussian windowing function. This function may take the form:.sub.e -.vertline.( 2 n-N)/A.vertline..sup.Pwhere:A=N(-ln.epsilon.).sup.-1/P; .epsilon.
Abstract translation:通过在频域中表征期望的滤波器通带来设计数字滤波器,将该表示变换为时域,从该变换函数中选择以周期性间隔的间隔的加权系数,并用高斯窗口函数对系数进行加权。 该函数可以采用以下形式:e- |(2 n-N)/ A | P其中:A = N(-lnε)-1 / P; epsilon <1 epsilon = n = 0和n = N(缩小比)所需的窗口值; N =(F.I.R.抽头数)-1; 而P =任意幂。