METHOD FOR FABRICATING A DRAM CAPACITOR
    1.
    发明申请
    METHOD FOR FABRICATING A DRAM CAPACITOR 有权
    制造DRAM电容器的方法

    公开(公告)号:US20120262835A1

    公开(公告)日:2012-10-18

    申请号:US13084666

    申请日:2011-04-12

    IPC分类号: H01L21/02 H01G4/008

    摘要: A method for fabricating a dynamic random access memory (DRAM) capacitor stack is disclosed wherein the stack includes a first electrode, a dielectric layer, and a second electrode. The first electrode is formed from a conductive binary metal compound and the conductive binary metal compound is annealed in a reducing atmosphere to promote the formation of a desired crystal structure. The binary metal compound may be a metal oxide. Annealing the metal oxide (i.e. molybdenum oxide) in a reducing atmosphere may result in the formation of a first electrode material (i.e. MoO2) with a rutile-phase crystal structure. This facilitates the formation of the rutile-phase crystal structure when TiO2 is used as the dielectric layer. The rutile-phase of TiO2 has a higher k value than the other possible crystal structures of TiO2 resulting in improved performance of the DRAM capacitor.

    摘要翻译: 公开了一种用于制造动态随机存取存储器(DRAM)电容器堆叠的方法,其中堆叠包括第一电极,电介质层和第二电极。 第一电极由导电二元金属化合物形成,并且导电二元金属化合物在还原气氛中退火以促进所需晶体结构的形成。 二元金属化合物可以是金属氧化物。 在还原气氛中退火金属氧化物(即氧化钼)可导致形成具有金红石相晶体结构的第一电极材料(即MoO 2)。 当使用TiO 2作为电介质层时,这有助于金红石相晶体结构的形成。 TiO 2的金红石相具有比其他可能的TiO 2晶体结构更高的k值,从而改善了DRAM电容器的性能。

    Method for fabricating a DRAM capacitor
    3.
    发明授权
    Method for fabricating a DRAM capacitor 有权
    制造DRAM电容器的方法

    公开(公告)号:US08813325B2

    公开(公告)日:2014-08-26

    申请号:US13084666

    申请日:2011-04-12

    摘要: A method for fabricating a dynamic random access memory (DRAM) capacitor stack is disclosed wherein the stack includes a first electrode, a dielectric layer, and a second electrode. The first electrode is formed from a conductive binary metal compound and the conductive binary metal compound is annealed in a reducing atmosphere to promote the formation of a desired crystal structure. The binary metal compound may be a metal oxide. Annealing the metal oxide (i.e. molybdenum oxide) in a reducing atmosphere may result in the formation of a first electrode material (i.e. MoO2) with a rutile-phase crystal structure. This facilitates the formation of the rutile-phase crystal structure when TiO2 is used as the dielectric layer. The rutile-phase of TiO2 has a higher k value than the other possible crystal structures of TiO2 resulting in improved performance of the DRAM capacitor.

    摘要翻译: 公开了一种用于制造动态随机存取存储器(DRAM)电容器堆叠的方法,其中堆叠包括第一电极,电介质层和第二电极。 第一电极由导电二元金属化合物形成,导电二元金属化合物在还原气氛中退火以促进所需晶体结构的形成。 二元金属化合物可以是金属氧化物。 在还原气氛中退火金属氧化物(即氧化钼)可导致形成具有金红石相晶体结构的第一电极材料(即MoO 2)。 当使用TiO 2作为电介质层时,这有助于金红石相晶体结构的形成。 TiO 2的金红石相具有比其他可能的TiO 2晶体结构更高的k值,从而改善了DRAM电容器的性能。

    FABRICATION OF SEMICONDUCTOR STACKS WITH RUTHENIUM-BASED MATERIALS
    4.
    发明申请
    FABRICATION OF SEMICONDUCTOR STACKS WITH RUTHENIUM-BASED MATERIALS 有权
    用基于金属的材料制造半导体堆叠

    公开(公告)号:US20120171839A1

    公开(公告)日:2012-07-05

    申请号:US13395071

    申请日:2009-09-18

    IPC分类号: H01L21/02

    摘要: This disclosure provides a method of fabricating a semiconductor stack and associated device such as a capacitor and DRAM cell. In particular, a bottom electrode upon which a dielectric layer is to be grown may have a ruthenium-based surface. Lattice matching of the ruthenium surface with the dielectric layer (e.g., titanium oxide, strontium titanate or barium strontium titanate) helps promote the growth of rutile-phase titanium oxide, thereby leading to higher dielectric constant and lower effective oxide thickness. The ruthenium-based material also provides a high work function material, leading to lower leakage. To mitigate nucleation delay associated with the use of ruthenium, an adherence or glue layer based in titanium may be employed. A pretreatment process may be further employed so as to increase effective capacitor plate area, and thus promote even further improvements in dielectric constant and effective oxide thickness (“EOT”).

    摘要翻译: 本公开提供了制造半导体堆叠和相关设备(诸如电容器和DRAM单元)的方法。 特别地,要生长电介质层的底部电极可以具有钌基表面。 钌表面与电介质层的晶格匹配(例如氧化钛,钛酸锶钛酸钡或钛酸钡锶)​​有助于促进金红石相二氧化钛的生长,从而导致更高的介电常数和更低的有效氧化物厚度。 钌基材料还提供高功函数材料,导致较低的泄漏。 为了减轻与使用钌有关的成核延迟,可以采用基于钛的粘附层或胶层。 可以进一步采用预处理工艺,以增加有效的电容器板面积,从而进一步提高介电常数和有效的氧化物厚度(“EOT”)。