Abstract:
A controller (15) performs a stop operation of stopping electric power generation by a fuel cell (3); then performs an activity recovery operation of stopping the supply of a fuel gas by a fuel gas supply unit (10) to an anode (2a), causing an anode inert gas supply unit (13) to supply an inert gas to the anode (2a), and causing an oxidizing gas supply unit (11) to supply an oxidizing gas to a cathode (2b); and performs control such that the fuel gas supply unit (10) resumes supplying the fuel gas to the anode (2a) to resume the electric power generation by the fuel cell (3) after the cell voltage of the fuel cell (3) which is detected by a voltage detector (14) has decreased to a first voltage or lower.
Abstract:
There is provided a fuel cell power generation system that exhibits superior efficiency of power generation and durability.The fuel cell power generation system includes: a fuel cell 4 including a fuel electrode 2, an oxidant electrode 3, and an electrolyte 1 on which the fuel electrode 2 and the oxidant electrode 3 are formed; an output control unit 11 that controls an output of the fuel cell 4; and a determination unit 12 that determines, based on an integrated amount of impurities contained in an oxidant gas and supplied to the oxidant electrode 3, a time at which the fuel cell 4 is brought into an open circuit state. The output control unit 11 halts power generation of the fuel cell 4 for a predetermined period of time every time determined by the determination unit 12, thereby bringing the fuel cell 4 into the open circuit state.
Abstract:
A carbon fiber woven fabric for use as a gas diffusion layer base material in a polymer electrolyte fuel cell has a surface that is smoothed and further optimized to inhibit non-uniform infiltration of a coating for water-repellent-layer formation, to provide an electrolyte membrane-electrode assembly suitable for operation under a high humidification condition. The gas diffusion layer base material may be a carbon fiber woven fabric, wherein a ratio of the area of gap portions where neither warp thread nor weft thread exists: (10/W−Y)(10/Z−X) to the area of portions where warp thread is crossing weft thread: XY mm2 is in the range of about 1/1500 to about 1/5, where the carbon fiber woven fabric has a warp density of Z threads/cm, a weft density of W threads/cm, a warp thickness of X mm and a weft thickness of Y mm.
Abstract:
Improvement of simplicity and durability of a stretch rod extending device and a bottom mold lifting device, equipped on a stretch blow molding machine, is achieved by applying a combination of a magnetic screw shaft and a magnetic nut member, which is able to convert rotary-linear movement smoothly without contact. The nut member and the screw shaft of the extending device 6 and lifting device 30 comprise a magnetic nut member 65, 116 and a magnetic screw shaft 66, 117, having spiral N magnetic pole and S magnetic pole alternately provided on inner peripheral surface of a cylindrical member and outer peripheral surface of a shaft at a same regular pitch. The magnetic screw shaft is inserted into the plunger 61, 115, having the magnetic nut member equipped inside with keeping required clearance so as to match the magnetic pole to oppose the magnetic nut member at the same poles each other.
Abstract:
Disclosed is a fuel cell comprising: a hydrogen-ion conductive polymer electrolyte membrane; a pair of electrodes sandwiching the hydrogen-ion conductive polymer electrolyte membrane; a first separator plate having a gas flow path for supplying a fuel gas to one of the electrodes; and a second separator plate having a gas flow path for supplying an oxidant gas to the other of the electrodes, wherein each of the electrodes has an electrode catalyst layer comprising at least a conductive carbon particle carrying an electrode catalyst particle and a hydrogen-ion conductive polymer electrolyte, the electrode catalyst layer being in contact with the hydrogen-ion conductive polymer electrolyte membrane, and at least one of the electrodes comprises a catalyst for trapping the fuel gas or the oxidant gas which has passed through the hydrogen-ion conductive polymer electrolyte membrane.
Abstract:
A polymer electrolyte fuel cell is provided comprising: a hydrogen ion conductive polymer electrolyte membrane; an anode and a cathode sandwiching the hydrogen ion conductive polymer electrolyte membrane; an anode side electroconductive separator having a gas channel for supplying a fuel gas to the anode; a cathode side electroconductive separator having a gas channel for supplying an oxidant gas to the cathode; characterized in that the anode and the cathode comprise a gas diffusion layer and a catalyst layer formed on the gas diffusion layer at the side in contact with the hydrogen ion conductive polymer electrolyte membrane, the catalyst layer has catalyst particles and a hydrogen ion conductive polymer electrolyte, and at least either of hydrogen ion conductivity and gas permeability of at least either of the anode and the cathode varies in a thickness direction of the anode or the cathode.
Abstract:
An acrylic resin plastisol coating compound which comprises containing therein acrylic resin particles and a self-crosslinking blocked isocyanate prepolymer having blocked isocyanate group and hydroxyl group in the molecule. It is superior in storage stability and workability and gives a coating film with good adhesion and chipping resistance.
Abstract:
An active-matrix substrate 30 includes multiple function lines 31, a structure for fixing up the arrangement of the function lines, a first conductive layer 43, a second conductive layer 42, multiple transistors 32 and multiple pixel electrodes 33. Each of the function lines 31 includes: a core 36, at least the surface of which has electrical conductivity; an insulating layer 37 that covers the surface of the core; and a semiconductor layer 38 that covers the insulating layer. Some portions of the first and second conductive layers 43 and 42 overlap with the respective semiconductor layers of the function lines but the others not. The transistors 32 are provided so as to have their channel defined as a region 44 in the semiconductor layer by the first and second conductive layers. The pixel electrodes 33 are electrically connected to the first conductive layer 43.
Abstract:
A plasma deposition device 1 comprises electrodes 13 mounted on an electrode substrate 11, gas introducing holes 12 provided between said electrodes 13 for introducing material gas G to the interior, a deposition substrate 30 provided to oppose to said electrodes 13 from a predetermined distance d, and a power source 60 generating plasma from said material gas by providing energy thereto, wherein material gas G is resolved to active species R deposited on said deposition substrate 30, characterized in applying voltage to adjacent electrodes 13 so as to generate discharge DC.
Abstract:
The polymer electrolyte fuel cell of the present invention exhibits an excellent performance with an efficient electrode reaction; by providing a layer comprising an electroconductive fine particle between the catalytic reaction layer and the gas diffusion layer in the electrodes; by providing a hydrogen ion diffusion layer on at least either surface of the catalyst particle or the carrier, which carries the catalyst particle in the catalytic reaction layer; or by constituting the catalytic reaction layer with at least a catalyst comprising a hydrophilic carbon material with catalyst particles carried thereon and a water repellent carbon material.