Abstract:
The present invention provides a methodology for improving a yield of 2R,4R-Monatin. Specifically, the present invention provides a method for producing 2S,4R-Monatin or a salt thereof, comprising contacting 4R-IHOG with an L-amino acid aminotransferase in the presence of an L-amino acid to form the 2S,4R-Monatin; a method for producing 2R,4R-Monatin or a salt thereof, comprising isomerizing the 2S,4R-Monatin to form the 2R,4R-Monatin; and the like. These production methods may further comprise condensing indole-3-pyruvate and pyruvate to form the 4R-IHOG, and deaminating a tryptophan to form the indole-3-pyruvate.
Abstract:
A mutant glutamate-cysteine ligase (GSHA) suitable for generating γ-Glu-Val, and a method for producing γ-Glu-Val-Gly using the same are provided. γ-Glu-Val is produced by using a mutant GSHA having a specific mutation with Glu and Val as raw materials, and γ-Glu-Val-Gly is further produced by using γ-Glu-Val and Gly as raw materials. γ-Glu-Val-Gly is produced by using a mutant GSHA having a specific mutation with Glu, Val, and Gly as raw materials.
Abstract:
A mutant glutamate-cysteine ligase (GSHA) suitable for generating γ-Glu-Val, and a method for producing γ-Glu-Val-Gly using the same are provided. γ-Glu-Val is produced by using a mutant GSHA having a specific mutation with Glu and Val as raw materials, and γ-Glu-Val-Gly is further produced by using γ-Glu-Val and Gly as raw materials. γ-Glu-Val-Gly is produced by using a mutant GSHA having a specific mutation with Glu, Val, and Gly as raw materials.