Abstract:
A microorganism useful as an expression host for γ-Glu-Val synthetase and a method for producing γ-Glu-Val-Gly using γ-Glu-Val synthetase expressed in the microorganism are provided. By using γ-Glu-Val synthetase expressed in a bacterium, such as Escherichia bacteria, modified so that the activity of a protein encoded by a ybdK gene (YBDIQ is reduced as an expression host, γ-Glu-Val-Gly is produced (Yom Glu, Val, and Gly as raw materials.
Abstract:
A yeast extract containing 0.2% or more of γ-Glu-Abu based on dry weight of the yeast extract is produced by culturing a yeast, such as Saccharomyces cervisiae or Candida utilis, in a medium containing a compound selected from Abu (L-2-aminobutyric acid) and γ-Glu-Abu (L-γ-glutamyl-L-2-aminobutyric acid), and preparing a yeast extract from the obtained cells.
Abstract:
A yeast extract containing 0.2% or more of γ-Glu-Abu based on dry weight of the yeast extract is produced by culturing a yeast, such as Saccharomyces cervisiae or Candida utilis, in a medium containing a compound selected from Abu (L-2-aminobutyric acid) and γ-Glu-Abu (L-γ-glutamyl-L-2-aminobutyric acid), and preparing a yeast extract from the obtained cells.
Abstract:
The present invention describes novel bacterial L-amino acids α-ligases, which catalyzing reaction of dipeptide formation having an acidic L-amino acid such as L-Asp or L-Glu at the N-terminus. The method for producing dipeptides using said L-amino acids α-ligases and a bacterium of the family Enterobacteriaceae, particularly a bacterium belonging to the genus Escherichia, which has been modified to contain the DNA encoding said L-amino acids α-ligases, is described.
Abstract:
The present invention describes novel bacterial L-amino acids α-ligases, which catalyzing reaction of dipeptide formation having an acidic L-amino acid such as L-Asp or L-Glu at the N-terminus. The method for producing dipeptides using said L-amino acids α-ligases and a bacterium of the family Enterobacteriaceae, particularly a bacterium belonging to the genus Escherichia, which has been modified to contain the DNA encoding said L-amino acids α-ligases, is described.
Abstract:
A mutant glutathione synthetase (GSHB) suitable for generating γ-Glu-Val-Gly, and a method for producing γ-Glu-Val-Gly using the same are provided. γ-Glu-Val-Gly is produced by using a mutant GSHB having a mutation at such a position as V7, N13, I14, N15, K17, F22, F95, M165, N199, Y200, P202, I274, T285, and P287.
Abstract:
A mutant glutamate-cysteine ligase (GSHA) suitable for generating γ-Glu-Val, and a method for producing γ-Glu-Val-Gly using the same are provided. γ-Glu-Val is produced by using a mutant GSHA having a specific mutation with Glu and Val as raw materials, and γ-Glu-Val-Gly is further produced by using γ-Glu-Val and Gly as raw materials. γ-Glu-Val-Gly is produced by using a mutant GSHA having a specific mutation with Glu, Val, and Gly as raw materials.
Abstract:
A mutant glutamate-cysteine ligase (GSHA) suitable for generating γ-Glu-Val, and a method for producing γ-Glu-Val-Gly using the same are provided. γ-Glu-Val is produced by using a mutant GSHA having a specific mutation with Glu and Val as raw materials, and γ-Glu-Val-Gly is further produced by using γ-Glu-Val and Gly as raw materials. γ-Glu-Val-Gly is produced by using a mutant GSHA having a specific mutation with Glu, Val, and Gly as raw materials.