Abstract:
The combustion and flue gas treatment system includes a furnace for combusting a fuel with an oxidizer generating a flue gas, ducting for the flue gas connected to a NOx removal unit and a SOx removal unit, and a recirculation line for recirculating a part of the flue gas back to the furnace. The SOx removal unit is located upstream of the NOx removal unit with reference to the flue gas flow. The recirculation line is connected to the ducting downstream the SOx removal unit.
Abstract:
The present invention relates to a method of cleaning a carbon dioxide rich flue gas stream containing oxygen. The method includes heating the flue gas stream to a temperature suitable for selective catalytic reduction (SCR) of NOX; and reducing at least some of the NOX in the heated flue gas stream to N2 by SCR. Heating of the flue gas stream includes removal of residual oxygen contained in the flue gas by catalytic oxidation of a suitable carburant. The present invention further relates to a gas processing unit.
Abstract:
A refrigeration system for condensation of carbon dioxide (CO2) in a flue gas stream, the system includes a refrigeration circuit, a flue gas treatment system that includes a flue gas compressor, a flue gas adsorption drier, and a refrigeration system for condensation of CO2; and a method for condensation of CO2 in a flue gas stream using a circulating stream of an external refrigerant.
Abstract:
The present invention relates to a method for capturing carbon dioxide CO2 by carbonation in a circulating fluidized bed (CFB) carbonation reactor wherein temperature profile is adjusted by recirculation of solid fractions of metal oxide MeO and metal carbonate MeCO3 to the CFB carbonation reactor. Also a system recirculating the metal oxide MeO and metal carbonate MeCO3 is provided by the invention.
Abstract:
The present invention relates to a method and a system for cleaning a CO2 rich flue gas stream containing water vapor and NOX prior to CO2 sequestration. The method and system include heating the flue gas stream to a temperature suitable for selective catalytic reduction (SCR) of NOX in a flue gas heater, reducing at least some of the NOX in the heated flue gas stream to N2 by SCR, and removing at least some of the water vapor from the NOX depleted flue gas stream by adsorption in an adsorption drier.
Abstract:
A carbon capture system includes a Carbonator for adsorbing carbon dioxide with a carbon dioxide lean sorbent generating a carbon dioxide rich sorbent, a first Calciner for thermally decomposing a carbon dioxide rich sorbent into a carbon dioxide lean sorbent and carbon dioxide, a supply of raw material to be calcined into the first Calciner containing a carbon dioxide rich sorbent, a connection between the first Calciner and the Carbonator, a second Calciner for thermally decomposing a carbon dioxide rich sorbent into a carbon dioxide lean sorbent and carbon dioxide, a connection between the Carbonator and the second Calciner, and a connection between the second Calciner and the Carbonator.
Abstract:
In the arrangement of a combustion system and a flue gas treatment system, the combustion system including a combustion chamber with at least an injector, a gas supply line connected to the at least an injector, a fuel supply line connected to the at least an injector. The gas supply line is connected to a source of compressed gas containing CO2.
Abstract:
A method for combustion of a fuel and treatment of the resulting flue gas includes: combusting a fuel to produce a hot flue gas stream containing at least carbon dioxide (CO2) and sulfur dioxide (SO2), bringing the flue gas stream into contact with solid calcium oxide (CaO) in a carbonation reactor operating at a temperature at which CO2 in the flue gas reacts with CaO to form solid calcium carbonate (CaCO3), heating CaCO3 in a calcination reactor operating at a temperature at which CaCO3 is converted to CaO and CO2, and recirculating CaO formed in the calcination reactor back to the carbonation reactor. Heating can be at least partially effected by indirect heat exchange with hot flue gas from the combustion. Flue gas used for the indirect heat exchange can be subsequently subjected to dry desulfurization before it is brought into contact with CaO in the carbonation reactor.
Abstract:
The present invention relates to a method of pressurizing a fluid comprising carbon dioxide, the method includes: obtaining the fluid from a unit for removing carbon dioxide from a process gas; compressing the fluid to a pressure above the critical pressure of carbon dioxide; and cooling the compressed fluid to a temperature above the critical temperature of carbon dioxide to produce a supercritical fluid. The invention further relates to an apparatus for pressurizing a fluid comprising carbon dioxide, the apparatus including: means for obtaining the fluid from a unit for removing carbon dioxide from a process gas; means for compressing the fluid to a pressure above the critical pressure of carbon dioxide; and means for cooling the compressed fluid to a temperature above the critical temperature of carbon dioxide to produce a supercritical fluid.
Abstract:
The invention pertains to a system for purification of a carbon dioxide rich flue gas generated in a boiler combusting a fuel in the presence of a gas containing oxygen, and being contaminated by NOx gases, wherein the system comprising one or more gas drier(s) comprising desiccants for removal of at least a portion of water content of the further compressed carbon dioxide rich flue gas; and a closed loop connected to the drier(s) for regeneration of desiccants of the drier(s) wherein the NOx gases are removed substantially separately from the water vapor. The invention pertains also to a method for removing the NOx gases substantially separately from the water vapor.