Abstract:
A textured enclosure component including two different types of surface features is disclosed. The two different types of surface features are differently sized. The combination of differently sized surface features provides both anti-glare and anti-reflective properties to the enclosure component.
Abstract:
A glass component of an electronic device housing may define a textured surface having micro-scale tactile friction features that provide a specified friction between a user's finger and the glass component. More specifically, the tactile friction features may reduce a contact surface area that is in contact with the user's finger in order to produce a reduced or specified coefficient of friction.
Abstract:
A metal enclosure has a surface region which is coated with cladding material using a laser cladding process. The metal enclosure can form at least a portion of an electronic device housing. All or part of one or more surfaces of the enclosure can be coated with cladding material. The coating of cladding material can be varied at selective regions of the enclosure to provide different structural properties at these regions. The coating of cladding material can be varied at selective regions to provide contrast in cosmetic appearance.
Abstract:
A metallic glass part is provided. The metallic glass part includes an alloy core and a metallic glass shell surrounding the alloy core. The alloy core provides compressive force on the metallic glass shell at an interface between the alloy core and the metallic glass shell.
Abstract:
A method of manufacturing a co-molded housing component for an electronic device is disclosed. A component formed from a ceramic material is placed in a mold. The mold comprises a first section defining a first cavity configured to receive the first component, and a second section defining a second cavity that is in communication with the first cavity when the mold is closed. The second cavity is in the shape of a feature that is to be joined to the ceramic material. A polymer material is injected into the second cavity, thereby forming the feature from the polymer material and bonding the feature to the ceramic material. The polymer material is cured. The first component and the feature together form the housing component for an electronic device.
Abstract:
Pressure sensing systems comprising bulk-solidifying amorphous alloys and pressure-sensitive switches containing bulk-solidifying amorphous alloys. The bulk-solidifying amorphous alloys are capable of repeated deformation upon application of pressure, and change their electrical resistivity upon deformation, thereby enabling measurement of the change in resistivity and consequently, measuring the deformation and amount of pressure applied.
Abstract:
Disclosed is a vessel for melting and casting meltable materials. The vessel may be a surface temperature regulated vessel for providing a substantially non-wetting interface with the molten materials. In one embodiment, the vessel may include one or more temperature regulating channels configured to flow a fluid therein for regulating a surface temperature of the vessel such that molten materials are substantially non-wetting at the interface with the vessel. Disclosed also includes systems and methods for melting and casting meltable materials using the vessel.
Abstract:
Exemplary embodiments described herein related to methods and systems for casting metal alloys into articles such as BMG articles. In one embodiment, processes involved for storing, pre-treating, alloying, melting, injecting, molding, etc. can be combined as desired and conducted in different chambers. During these processes, each chamber can be independently, separately controlled to have desired chamber environment, e.g., under vacuum, in an inert gas environment, or open to the surrounding environment. Due to the flexible, independent control of each chamber, the casting cycle time can be reduced and the production throughput can be increased. Contaminations of the molten materials and thus the final products are reduced or eliminated.
Abstract:
Described herein are methods of constructing a part using metallic glass-forming alloys, layer by layer, as well as bulk metallic glass-forming materials designed for use therewith. In certain embodiments, a layer of metallic glass-forming alloy powder, wire, or a sheet of metallic glass material is deposited to selected positions and then fused to a layer below by suitable methods such as laser heating or electron beam heating. The deposition and fusing are then repeated as need to construct the part, layer by layer. One or more sections or layers of material that is not a metallic glass can be included as needed to form composite parts.
Abstract:
Exemplary embodiments described herein related to methods and systems for casting metal alloys into articles such as BMG articles. In one embodiment, processes involved for storing, pre-treating, alloying, melting, injecting, molding, etc. can be combined as desired and conducted in different chambers. During these processes, each chamber can be independently, separately controlled to have desired chamber environment, e.g., under vacuum, in an inert gas environment, or open to the surrounding environment. Due to the flexible, independent control of each chamber, the casting cycle time can be reduced and the production throughput can be increased. Contaminations of the molten materials and thus the final products are reduced or eliminated.