Abstract:
A method includes receiving, at a media server from an electronic device, a first request for a video content item. The method includes selecting, at the media server, a particular version of the video content item to communicate to the electronic device based on a geographic location of the electronic device. The particular version is a vector graphics format version responsive to the geographic location corresponding to a first coverage area. The particular version is a bitmap graphics format version responsive to the geographic location corresponding to a second coverage area different from the first coverage area. The method also includes communicating the particular version of the video content item from the media server to the electronic device.
Abstract:
A network includes a supervisory sensor in communication with a wireless network and a non-supervisory sensor in communication with the supervisory sensor, wherein the non-supervisory sensor communicates with the wireless network through the supervisory sensor. The supervisory sensor may be configured to receive downloads from a server communicating through the wireless network and to collect data from the non-supervisory sensor. The supervisory sensor may be configured to transmit the collected data to a server on the wireless network. Moreover, the non-supervisory sensor and the supervisory sensor each have an active state and an inactive state and wherein the supervisory sensor may be in the active state while the non-supervisory sensor is in the inactive state.
Abstract:
A network device may receive intelligent operations interface information that may comprise devices, resources, or events that may affect a communication system. The intelligent operations interface information may be processed to isolate network performance problems and effectuate a prioritized resolution of the network performance problems.
Abstract:
A network includes a supervisory sensor in communication with a wireless network and a non-supervisory sensor in communication with the supervisory sensor, wherein the non-supervisory sensor communicates with the wireless network through the supervisory sensor. The supervisory sensor may be configured to receive downloads from a server communicating through the wireless network and to collect data from the non-supervisory sensor. The supervisory sensor may be configured to transmit the collected data to a server on the wireless network. Moreover, the non-supervisory sensor and the supervisory sensor each have an active state and an inactive state and wherein the supervisory sensor may be in the active state while the non-supervisory sensor is in the inactive state.
Abstract:
Smart M2M devices may be utilized to discover, generate, develop, and use customer behavior information. Security, marketing, and sales may be made through the use of short-range communication mechanisms, and customer behavior information may be gathered while providing devices with product information and other content. In an example configuration, smart M2M devices may determine the location of a device in a venue and compare it to historical location information associated with the device to determine whether authentication should be requested.
Abstract:
A network includes a supervisory sensor in communication with a wireless network and a non-supervisory sensor in communication with the supervisory sensor, wherein the non-supervisory sensor communicates with the wireless network through the supervisory sensor. The supervisory sensor may be configured to receive downloads from a server communicating through the wireless network and to collect data from the non-supervisory sensor. The supervisory sensor may be configured to transmit the collected data to a server on the wireless network. Moreover, the non-supervisory sensor and the supervisory sensor each have an active state and an inactive state and wherein the supervisory sensor may be in the active state while the non-supervisory sensor is in the inactive state.
Abstract:
A network includes a supervisory sensor in communication with a wireless network and a non-supervisory sensor in communication with the supervisory sensor, wherein the non-supervisory sensor communicates with the wireless network through the supervisory sensor. The supervisory sensor may be configured to receive downloads from a server communicating through the wireless network and to collect data from the non-supervisory sensor. The supervisory sensor may be configured to transmit the collected data to a server on the wireless network. Moreover, the non-supervisory sensor and the supervisory sensor each have an active state and an inactive state and wherein the supervisory sensor may be in the active state while the non-supervisory sensor is in the inactive state.
Abstract:
A radio frequency signal mediator configured indoors passively receives signals from a user wireless device and determines layer two radio access network measurement data from the signals. At least one other radio frequency signal mediator in the same space also passively receives signals from the user wireless device and determines layer two radio access network measurement data from the signals. The radio frequency signal mediators send the data to a location determining device that determines a location for the user device based on the at least two sets of data and send the location data to a location server.
Abstract:
An emergency mobile call agent includes a mobile originating call agent and a mobile terminating call agent. The mobile originating call agent responds to receiving an emergency notification and the emergency being above an emergency threshold condition, by notifying a contact list associated with a user that the user is impacted by the emergency. The mobile originating call agent may notify the contact list if the emergency is at or above a threshold emergency level set by the user. The mobile terminating call agent controls cellular traffic by evaluating one or more aspects of radio access network (RAN) loading and diverting incoming traffic to a user impacted by the emergency to another form of communication if RAN loading is too high for the traffic.
Abstract:
Smart M2M devices may be utilized to discover, generate, develop, and use customer behavior information. Security, marketing, and sales may be made through the use of short-range communication mechanisms, and customer behavior information may be gathered while providing devices with product information and other content. In an example configuration, smart M2M devices may determine the location of a device in a venue and compare it to historical location information associated with the device to determine whether authentication should be requested.