摘要:
The signals from adjacent transmitters reinforce one another. As a result of this over-the-air combining, signal quality is improved in the network and especially at or near cell boundaries. The present invention provides a graduated single frequency network (GSFN) wherein transmitters in cells throughout a geographic area cooperate to broadcast data to user terminals throughout the geographic area, and adjacent transmitters transmit signals that substantially reinforce one another. When transmitting the data, transmitters in certain adjacent cells throughout the geographic area may employ slightly different transmit parameters to provide slightly different transmission signals. The transmission signals used to transmit the data may be varied in a graduated fashion throughout the geographic area, wherein even when there is a difference in the transmission signals of transmitters in adjacent cells, the transmission signals reinforce one another despite being different.
摘要:
The signals from adjacent transmitters reinforce one another. As a result of this over-the-air combining, signal quality is improved in the network and especially at or near cell boundaries. The present invention provides a graduated single frequency network (GSFN) wherein transmitters in cells throughout a geographic area cooperate to broadcast data to user terminals throughout the geographic area, and adjacent transmitters transmit signals that substantially reinforce one another. When transmitting the data, transmitters in certain adjacent cells throughout the geographic area may employ slightly different transmit parameters to provide slightly different transmission signals. The transmission signals used to transmit the data may be varied in a graduated fashion throughout the geographic area, wherein even when there is a difference in the transmission signals of transmitters in adjacent cells, the transmission signals reinforce one another despite being different.
摘要:
In order to minimize the control signaling overhead associated with transmitting CQI data from mobile stations to base stations in wireless communication networks supporting MU-MIMO, the CQI during MU-MIMO operation is estimated based on SU-MIMO CQI data, mobile station geometry data, and mobile station PMI (Precoding Matrix Index) data. More particularly, the base station maintains and updates a knowledge pool that correlates geometry data and learned impact of interfering precoder data to degradation of CQI values responsive to switching from SU-MIMO operation to MU-MIMO operations. Then, when the base station switches from SU-MIMO operation to MU-MIMO operation, it consults the knowledge pool to predict the degradation in CQI and subtracts them from the known, pre-switching SU-MIMO CQI feedback data for each relevant mobile station to predict the post-switching MU-MIMO CQIs for that mobile station.
摘要:
A hierarchical link scheduling system and method is provided. A central controller gathers network information, including global parameters and long term demands, and determines an initial schedule for link activation based on these variables. A scheduler receives the initial schedule and modifies the initial schedule based on local parameters, inter-schedule negotiation, or other short term or localized requests. The scheduler activates the links according to the modified schedule. Accordingly, the scheduler can be responsible for modifying the initial schedule provided by central controller with localized or short term requests or demands, and providing the necessary parameters to enable link activation between nodes according to the modified schedule.
摘要:
A hierarchical link scheduling system and method is provided. A central controller gathers network information, including global parameters and long term demands, and determines an initial schedule for link activation based on these variables. A scheduler receives the initial schedule and modifies the initial schedule based on local parameters, inter-schedule negotiation, or other short term or localized requests. The scheduler activates the links according to the modified schedule. Accordingly, the scheduler can be responsible for modifying the initial schedule provided by central controller with localized or short term requests or demands, and providing the necessary parameters to enable link activation between nodes according to the modified schedule.
摘要:
Methods and systems are provided for allocating resources including VoIP (voice over Internet Protocol) and Non-VoIP resources. In some embodiments, multiplexing schemes are provided for use with OFDMA (orthogonal frequency division multiplexing access) systems, for example for use in transmitting VoIP traffic. In some embodiments, various HARQ (Hybrid Automatic request) techniques are provided for use with OFDMA systems. In various embodiments, there are provided methods and systems for dealing with issues such as Handling non-full rate vocoder frames, VoIP packet jitter handling, VoIP capacity increasing schemes, persistent and non-persistent assignment of resources in OFDMA systems.
摘要:
Methods, base stations and access terminals for uplink signalling are provided. Resource request channel characteristics such as location in time-frequency, sequence, time slot, are assigned to each access terminal to distinguish their resource requests from the resource requests of other access terminals. Access terminals make requests using a resource request on a resource request channel having the assigned characteristics. The base station can then determine which access terminal transmitted the resource request based on the resource request channel characteristics of the resource request channel upon which the resource request was received. The base station then transmits a response to the request which may for example be a new resource allocation, a default allocation or a renewal of a previous allocation.
摘要:
Systems and methods for OFDM channelization are provided that allow for the co-existence of sub-band channels and diversity channels. Methods of defining diversity sub-channels and sub-band sub-channels are provided, and systematic channel definition and labeling schemes are provided.
摘要:
Systems and methods for OFDM channelization are provided that allow for the co-existence of sub-band channels and diversity channels. Methods of defining diversity sub-channels and sub-band sub-channels are provided, and systematic channel definition and labeling schemes are provided.
摘要:
The description herein relates to pilot designs for an Orthogonal Frequency Division Multiplexing (OFDM) based communication system. In the preferred embodiment, the communication system is one operating according to the IEEE 802.16m, or WiMax, standard. In general, an OFDM transmitter operates to insert pilot symbols into a resource of a transmit frame according to a predetermined staggered pilot symbol pattern defining pilot symbol locations within the resource of the transmit frame. The predetermined pilot symbol pattern is defined such that pilot symbols are located at or near time boundaries of the resource, at or near frequency boundaries of the resource, or both. By doing so, when generating a channel estimate for the communication channel between the OFDM transmitter and an OFDM receiver based on the pilot symbols, extrapolations needed to estimate the channel near the boundaries of the resource are optimized, thereby improving overall channel estimation accuracy.