摘要:
An optical detection tool employs a surgical end-effector (30) and an optical fiber (20). In operation, the surgical end-effector (30) is navigated within an anatomical region relative to an object foreign to the anatomical region and the optical fiber (20) generates an encoded optical signal indicative of a strain measurement profile of the optical fiber (20) as the surgical end-effector (30) is navigated within the anatomical region. The optical fiber (20) has a detection segment in a defined spatial relationship with the surgical end-effector (30). The strain measurement profile represents a normal profile in the absence of any measurable contact of the foreign object with the detection segment of the optical fiber (20). Conversely, the strain measurement profile represents an abnormal profile in response to a measurable contact of the foreign object with the detection segment of the optical fiber (20).
摘要:
A shape sensing device, system and method include an interventional instrument (102) having regions of articulation to be configured to change shape during an interventional procedure. An optical fiber (202) is disposed on or about the areas of articulation in a pattern to provide an optical signal indicating an instantaneous change or current position or orientation of the instrument. A signal interpretation module (115) is configured to receive the optical signals and interpret the instantaneous change or current position or orientation of the instrument.
摘要:
A guidance system and method include a real-time imaging device (121) configured to intra-operatively collect image data of a target region to provide a real-time image. A target determination module (108) is configured to generate an overlay map (111) registered to the real-time image to project morphological feature information on corresponding features in the real-time image of the target region. A medical instrument (122) is provided to perform a procedure on the target region such that the at least one medical instrument is guided to a region suitable for performing an operative task based upon the overlay map.
摘要:
A guidance system and method include a real-time imaging device (121) configured to intra-operatively collect image data of a target region to provide a real-time image. A target determination module (108) is configured to generate an overlay map (111) registered to the real-time image to project morphological feature information on corresponding features in the real-time image of the target region. A medical instrument (122) is provided to perform a procedure on the target region such that the at least one medical instrument is guided to a region suitable for performing an operative task based upon the overlay map.
摘要:
A shape sensing device, system and method include an interventional instrument (102) having regions of articulation to be configured to change shape during an interventional procedure. An optical fiber (202) is disposed on or about the areas of articulation in a pattern to provide an optical signal indicating an instantaneous change or current position or orientation of the instrument. A signal interpretation module (115) is configured to receive the optical signals and interpret the instantaneous change or cur rent position or orientation of the instrument.
摘要:
A surgical system includes a robot with both an active mode and an inactive mode of operation, and a holding arm for holding a surgical tool, and an immediate deactivator for determining when a human operator manually manipulates a holding arm or a surgical tool depending on signals from at least one condition sensor. Immediately upon that determination, the immediate deactivator deactivates the robot. The holding arm includes a stiffener/destiffener for increasing or decreasing the flexibility of the holding arm. The stiffness of the holding arm can be sufficiently decreased in the inactive mode to allow a human operator to skillfully control repositioning the surgical tool into a new position while the flexible holding arm is connected between the robot and the surgical tool. Also, the stiffness of the holding arm can be sufficiently increased, for essentially locking it into a rigid fixed shape for providing sufficient rigidity in the active mode for the robot to reposition the rigid holding arm for repositioning the surgical tool to perform preprogrammed tasks initiated by surgeon command inputs. The holding arm is completely inactive in both the active and inactive modes of the robot.
摘要:
A method for reconstructing a surface of a three-dimensional object (41) involves a projection of a laser spot pattern (12, 14) onto the surface of the three-dimensional object (41) by a laser (11), and a generation of a series of endoscopic images (24) as an endoscope (21) is translated and/or rotated relative to the three-dimensional object (41). Each endoscopic image (24) illustrates a different view (23) of a laser spot array (13, 15) within the laser spot pattern (12, 14) as projected onto the surface of the three-dimensional object (41) by the laser (11). The laser spot array (13, 15) may be identical to or a subset of the laser spot pattern (12, 14). The method further involves a reconstruction of the surface of the three-dimensional object (41) from a correspondence of the different views (23) of the laser spot array (13, 15) as illustrated in the endoscopic images (24).
摘要:
Methods and systems for nested cannula configuration involving helical tubes (40). The nested cannula (60) includes a plurality of telescoping tubes cooperatively configured and dimensioned to reach a target location relative to an anatomical region through a set of arcs (11, 21, 41) including one or more helical arcs (41) with each arc being determined between a point associated with the anatomical region and the target location. In particular, a three-dimensional image (51) of the anatomical region is utilized to generate the series of arcs, which in turn are utilized to calculate a pathway (53) that is utilized to configure and dimension the tubes.
摘要:
A pre-operative stage of an image-based localization method (30) involves a generation of a scan image (20) illustrating an anatomical region (40) of a body, and a generation of virtual information (21) including a prediction of virtual poses of endoscope (51) relative to an endoscopic path (52) within scan image (20) in accordance with kinematic and optical properties of endoscope (51). An intra-operative stage of the method (30) involves a generation of an endoscopic image (22) illustrating anatomical region (40) in accordance with endoscopic path (52) and a generation of tracking information (23) includes an estimation of poses of endoscope (51) relative to endoscopic path (52) within endoscopic image (22) corresponding to the prediction of virtual poses of endoscope (51) relative to endoscopic path (52) within scan image (20).
摘要:
Planning deployment of a medical robot based on concentric cannulas takes into account multiple radii of curvature. The radii of curvature are dependent on tube diameter. Tubes of smaller diameter can have tighter radii of curvature. Planning also takes into account moment of inertia and elasticity of tubes. For the purposes of planning, an A* algorithm is used for cost wave propagation together with a configuration space, a cost metric, and a neighborhood. The neighborhood is adaptive. The adaptive neighborhood can be different for each node in the configuration space data structure and depends on curvature affecting properties of individual tubes used to achieve a path from a most distal point to a most proximal point within a body to be examined.