Abstract:
An electronic device may be provided with upper and lower housing portions that are separated by a gap. Hinge structures may allow the upper housing portion to rotate between a closed position and an open position. A flexible printed circuit in the electronic device may be coupled between components in the upper housing portion such as the display and components in the lower housing portion and may span the gap. A hinge gap cover may cover the gap and may overlap the flexible printed circuit to block the flexible printed circuit from view when the upper housing portion is in the closed position. The hinge gap cover may be formed from a layer of radio-transparent material that is rotatably coupled to the upper housing portion and that is biased towards the lower housing with a spring structure.
Abstract:
Techniques for bonding structural features together in an enclosure of an electronic device are disclosed. A structural feature may be ultrasonically soldered to the enclosure to provide structural support and form a magnetic circuit within the device. Also, ultrasonic welding can bond various features to an interior region of the enclosure without leaving a mark or trace to an exterior region of the enclosure in a location corresponding to the various features. Further, one or more features can be actuated against the enclosure to bond the one or more features by friction welding. In addition, a rotational friction welding machine can rotate a feature having a relatively small diameter at relatively high speeds against the enclosure to drive the feature into the enclosure and frictionally weld the feature with the enclosure. Also, the friction welding does not leave any an appearance of cosmetic deformation on the exterior region.
Abstract:
This application relates to a laptop computer. The laptop computer includes a base portion pivotally coupled to a lid portion is described. The laptop computer includes a display assembly carried by the lid portion, where the display assembly includes a light-transmissive cover, a display layer overlaid by the light-transmissive cover, a display stack electrically coupled to and overlaid by the display layer, and a light pattern recognition module adjacent to the display stack and overlaid by the display layer. The light pattern recognition module includes (i) a light pattern projector that projects a light pattern directly through the display layer.
Abstract:
Cable assemblies for providing electrical communication between hinged sections of an electronic device are described. The cable assemblies can include a cover that covers one or more cables that run through a hinge region of the electronic device. The cable and cover can be drawn over a mandrel of the hinge region. The cover and the portions of the mandrel can be visible to a user at the hinge region of the electronic device. The cover can be sufficiently rigid to guide a path of the cable and protect the cable from bending beyond a prescribed angle during rotation of the electronic device at the hinge region. The cover can also be sufficiently rigid to prevent ceasing or folding of the cover and the cable during rotation of the electronic device at the hinge region.
Abstract:
Cable assemblies for providing electrical communication between hinged sections of an electronic device are described. The cable assemblies can include a cover that covers one or more cables that run through a hinge region of the electronic device. The cable and cover can be drawn over a mandrel of the hinge region. The cover and the portions of the mandrel can be visible to a user at the hinge region of the electronic device. The cover can be sufficiently rigid to guide a path of the cable and protect the cable from bending beyond a prescribed angle during rotation of the electronic device at the hinge region. The cover can also be sufficiently rigid to prevent ceasing or folding of the cover and the cable during rotation of the electronic device at the hinge region. The cable assemblies can also include a hinged cover that can be pivoted to close a gap between two hinged sections of the electronic device.
Abstract:
An electronic device having protruding features and a method for molding the protruding features to the electronic device are described. The protruding features may be formed by a molding tool that releases a material that flows through several apertures of a substrate. Also, the molding tool is positioned with respect to the substrate such that the material from the molding tool flows from an interior region of the substrate to an exterior region of the substrate via the several apertures. Accordingly, each aperture extends from an opening of the interior region and to an opening of the exterior region of the substrate. In some cases, the apertures may include a conical shape. For example, the opening in the interior region may include a diameter greater than a diameter of the opening in the exterior region. In this manner, the material, when cured, is mechanically secured to the substrate.
Abstract:
Cable assemblies for providing electrical communication between hinged sections of an electronic device are described. The cable assemblies can include a cover that covers one or more cables that run through a hinge region of the electronic device. The cable and cover can be drawn over a mandrel of the hinge region. The cover and the portions of the mandrel can be visible to a user at the hinge region of the electronic device. The cover can be sufficiently rigid to guide a path of the cable and protect the cable from bending beyond a prescribed angle during rotation of the electronic device at the hinge region. The cover can also be sufficiently rigid to prevent ceasing or folding of the cover and the cable during rotation of the electronic device at the hinge region.
Abstract:
Cable assemblies for providing electrical communication between hinged sections of an electronic device are described. The cable assemblies can include a cover that covers one or more cables that run through a hinge region of the electronic device. The cable and cover can be drawn over a mandrel of the hinge region. The cover and the portions of the mandrel can be visible to a user at the hinge region of the electronic device. The cover can be sufficiently rigid to guide a path of the cable and protect the cable from bending beyond a prescribed angle during rotation of the electronic device at the hinge region. The cover can also be sufficiently rigid to prevent ceasing or folding of the cover and the cable during rotation of the electronic device at the hinge region.
Abstract:
This application relates to a laptop computer. The laptop computer includes a base portion pivotally coupled to a lid portion is described. The laptop computer includes a display assembly carried by the lid portion, where the display assembly includes a light-transmissive cover, a display layer overlaid by the light-transmissive cover, a display stack electrically coupled to and overlaid by the display layer, and a light pattern recognition module adjacent to the display stack and overlaid by the display layer. The light pattern recognition module includes (i) a light pattern projector that projects a light pattern directly through the display layer.
Abstract:
This application relates to self-profiling friction pads for computing devices. In particular, the embodiments discussed herein describe self-profiling friction pads that have a naturally dome-shaped profile. In some embodiments, the self-profiling friction pads can be used as device feet for a computing device. Additionally, the self-profiling friction pads can be used to seal certain areas of the computing device such as a display or ventilation system. The self-profiling friction pads are configured to be deposited in a liquid state and form into a dome shape as a result of the material properties of the deposited liquid and the properties of the surface to which the liquid is deposited.