Abstract:
Systems and methods are provided for mitigating recirculation of backflow fluid through a fan. The fan includes a housing having a channel that extends from an inlet to an outlet of the housing. A rotor assembly is positioned within the channel and is configured to direct a fluid flow from the inlet to the outlet. The rotor assembly includes a hub, a plurality of fan blades, and a shroud disposed about a circumference of the fan blades, where a radial gap extends between the shroud and the housing. The radial gap is configured to receive a portion of the fluid flow from the outlet as backflow fluid. The rotor assembly also includes an inlet flange that is configured receive the backflow fluid from the radial gap and to direct the backflow fluid in a direction away from the inlet prior to discharge of the backflow fluid from the radial gap.
Abstract:
Systems and methods for nonvolatile memory (“NVM”) performance throttling are disclosed. Performance of an NVM system may be throttled to achieve particular data retention requirements. In particular, because higher storage temperatures tend to reduce the amount of time that data may be reliably stored in an NVM system, performance of the NVM system may be throttled to reduce system temperatures and increase data retention time.
Abstract:
A thermal management module for an integrated circuit assembly includes a housing defining a configured to receive a fluid and having a variable cross-sectional area. The thermal management module also includes a wick disposed within the sealed passage, where the wick forms pores configured to convey a liquid form of the fluid toward an evaporator section of the thermal management module. The thermal management module also includes a void formed within the sealed passage between the wick and a wall of the housing, wherein the void is configured to convey a vapor form of the fluid toward a condenser section of the thermal management module.
Abstract:
A head-mountable device can provide a cooling module that effectively manages heat while also minimizing noise, vibration, leakage, power consumption, size, and weight. To dissipate heat, the cooling module with a fan can be operated to move air through a chamber within the head-mountable device. An integrated heat sink can provide heat dissipation properties by drawing heat away from heat-generating components and into the chamber. The integrated heat sink can include a base plate that defines at least a portion of the chamber in which the blades of the fan are positioned. The integrated heat sink can further include fins between the chamber and an outlet. The fins can be integrated with the base plate to maximize heat dissipation and reduce the number of interfaces between separate parts.
Abstract:
Systems and methods for nonvolatile memory (“NVM”) performance throttling are disclosed. Performance of an NVM system may be throttled to achieve particular data retention requirements. In particular, because higher storage temperatures tend to reduce the amount of time that data may be reliably stored in an NVM system, performance of the NVM system may be throttled to reduce system temperatures and increase data retention time.