Abstract:
Sensors employing control systems determining locations of movable droplets within passageways, and related methods are disclosed. A sensor includes a movable droplet within a passageway supported on a substrate. The droplet may move to and from a quiescent point in the passageway which is at least partially formed by a hydrophobic layer. By including a hydrophobic layer having a hydrophobicity characteristic which decreases according to distance from the quiescent point, the droplet may move to a displacement position outside of the quiescent point in response to an external force. A control system of the sensor determines an acceleration and/or angular position of the sensor based on the displacement position. In this manner, a low cost sensor may be fabricated with without expensive nanostructures.
Abstract:
Embodiments of the present invention generally relate to methods for forming a SiGe layer. In one embodiment, a seed SiGe layer is first formed using plasma enhanced chemical vapor deposition (PECVD), and a bulk SiGe layer is formed directly on the PECVD seed layer also using PECVD. The processing temperature for both seed and bulk SiGe layers is less than 450 degrees Celsius.
Abstract:
Embodiments of the present invention provide an end effector capable of generating an electrostatic chucking force to chuck a substrate disposed therein without damaging the substrate. In one embodiment, an end effector for a robot, the end effector includes a body having an electrostatic chucking force generating assembly, and a mounting end coupled to the body, the mounting end for coupling the body to the robot.