Abstract:
A wavelength-selectable laser device providing spatially-selectable wavelength(s) may be used to select one or more wavelengths for lasing in a tunable transmitter or transceiver, for example, in a wavelength division multiplexed (WDM) optical system such as a WDM passive optical network (PON). The wavelength-selectable laser device uses a dispersive optical element, such as a diffraction grating, to disperse light emitted from a laser emitter and to direct different wavelengths of the light toward a reflector at different spatial positions such that the wavelengths may be selected by allowing light to be reflected from selected spatial position(s) back into the laser emitter. Thus, the reflected light with a wavelength at the selected spatial position(s) is allowed to complete the laser cavity.
Abstract:
An optical transceiver assembly includes a thermal dual arrayed waveguide grating (AWG) for both multiplexing and demultiplexing optical signals. The thermal dual AWG may be used as an optical multiplexer/demultiplexer with an array of laser emitters and an array of photodetectors to provide a transmitter optical subassembly (TOSA) and a receiver optical subassembly (ROSA) in the optical transceiver assembly. The thermal dual AWG may be formed as a single chip, and a temperature control device, such as thermoelectric cooler (TEC), may be used in the transceiver to stabilize the temperature of the AWG. In an embodiment, an external reflector may be used at a transmit output of the dual AWG to complete the lasing cavities after the AWG, thereby providing a laser array mux assembly. The optical transceiver device may also be part of a larger system, such as a wavelength division multiplexed (WDM) passive optical network (PON).
Abstract:
An optical sub-assembly cartridge for use in a multi-channel receiver optical sub-assembly (ROSA) is disclosed and includes pre-aligned demultiplexing optics. The optical sub-assembly cartridge may include a plurality of sidewalls which define a cartridge body and at least partially enclose a cavity therein. A sidewall of the cartridge body may include a sidewall opening configured to allow light to enter the cavity. A first optical filter disposed opposite the sidewall opening may receive light entering the cavity and be configured to pass unassociated channel wavelengths out of the cavity while reflecting associated channel wavelengths to a mirror disposed in the cavity. The mirror may then reflect the received channel wavelengths to a second optical filter within or external to the cavity. The second optical filter may emit a narrow spectrum of channel wavelengths to a photodiode package to convert the same to a proportional electrical signal.
Abstract:
A multi-channel transmitter optical subassembly (TOSA) with an off-center fiber in an optical coupling is disclosed, and can provide passive compensation for beam displacement introduced by optical isolators. The optical coupling receptacle can include an optical isolator configured to receive a focused light beam from a focus lens within the TOSA. The optical coupling receptacle may be offset such that a center line of the focused light beam entering the optical isolator is offset from a center line of a fiber within optical coupling receptacle. Thus the optical isolator receives the focused light beam from the focus lens and introduces beam displacement such that an optical signal is launched generally along a center line of the fiber. Thus the expected beam displacement introduced by the optical isolator is eliminated or otherwise mitigated by the offset between a center line of the fiber and a center position of the focus lens.
Abstract:
A multi-channel transmitter optical subassembly (TOSA) with an off-center fiber in an optical coupling is disclosed, and can provide passive compensation for beam displacement introduced by optical isolators. The optical coupling receptacle can include an optical isolator configured to receive a focused light beam from a focus lens within the TOSA. The optical coupling receptacle may be offset such that a center line of the focused light beam entering the optical isolator is offset from a center line of a fiber within optical coupling receptacle. Thus the optical isolator receives the focused light beam from the focus lens and introduces beam displacement such that an optical signal is launched generally along a center line of the fiber. Thus the expected beam displacement introduced by the optical isolator is eliminated or otherwise mitigated by the offset between a center line of the fiber and a center position of the focus lens.
Abstract:
An extended cavity Fabry-Perot laser assembly provides relatively narrow mode spacing while allowing relatively high speed optical modulation. The extended cavity Fabry-Perot laser assembly generally includes an exit reflector physically separated from a laser emitter (e.g., a gain chip) to extend the lasing cavity and narrow the mode spacing while maintaining a relatively small gain region in the laser emitter capable of higher speed optical modulation. The extended cavity Fabry-Perot laser assembly may be used in a multi-channel transmitter in a wavelength division multiplexed (WDM) optical system that selects a channel wavelength for the transmitter from among multiple channel wavelengths emitted by the laser assembly. The narrow mode spacing may be less than a WDM channel width, and more specifically, may be less than a channel passband of an arrayed waveguide grating (AWG) or other filter used to select the channel wavelength.
Abstract:
A multi-channel receiver optical subassembly (ROSA) including at least one sidewall receptacle configured to receive and electrically isolate an adjacent multi-channel transmitter optical subassembly (TOSA) is disclosed. The multi-channel ROSA includes a housing with at least first and second sidewalls, with the first sidewall being opposite the second sidewall and including at least one sidewall opening configured to fixedly attach to photodiode assemblies. The second sidewall includes at least one sidewall receptacle configured to receive at least a portion of an optical component package, such as a transistor outline (TO) can laser package, of an adjacent multi-channel TOSA, and provide electrical isolation between the ROSA housing and the TOSA within an optical transceiver. The sidewall receptacle can include non-conductive material in regions that directly or otherwise come into close proximity with the optical component package of the adjacent TOSA.